精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,边长为1的正ABC(C与O重合)的边BC在x轴上,顶点A在第一象限,现在进行以下操作:

(1)将ABC沿x轴向右平移一个单位长度,此时A变为A1

(2)将三角形沿x轴翻折,此时A1变为A2

(3)将三角形绕点O旋转180°,此时A2变为A3

(4)将三角形沿y轴翻折,此时A3变为A4

(5)将三角形绕点O旋转180°,此时A4变为A5

按照此规律,重复以上五步,则A2018的坐标为(  )

A. ,﹣ B. (﹣ C. D. (﹣,﹣

【答案】A

【解析】

画出图形,寻找规律,利用规律即可解决问题;

解:如图,观察图象可知10次一个循环回到点A.

2018÷10=2018,

A2018的坐标与A8相同,

A8,-),

A2018的坐标为(,-),

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):

温度x/

﹣4

﹣2

0

2

4

6

植物每天高度的增长量y/mm

41

49

49

41

25

1

由这些数据,科学家推测出植物每天高度的增长量y是温度x的二次函数,那么下列三个结论:

①该植物在0℃时,每天高度的增长量最大;

②该植物在﹣6℃时,每天高度的增长量能保持在25mm左右;

③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长.

上述结论中,所有正确结论的序号是

A. ①②③ B. ①③ C. ①② D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)分解因式  (直接写出结果);若是整数,则一定能被一个常数整除,这个常数的最大值是  

2)阅读,并解决问题:

分解因式

解:设,则原式

这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式.换元法是一个重要的数学方法,不少问题能用换元法解决.请你用“换元法”对下列多项式进行因式分解:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根

(1)求实数k的取值范围.

(2)若方程两实根满足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动不包括 C,点 P运动的速度为1cm/s;Q点在AC上从C点运动到A不包括A,速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.

(1) t 为何值时,P、Q 两点的距离为 4cm?

(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BAOM于点A,BCON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.

(1)当点B移动到使AB:OA=:3时,求的长;

(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.

(3)连接PQ,试说明3PQ2+OA2是定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.

(1)饲养场的长为多少米(用含a的代数式表示).

(2)若饲养场的面积为288m2,求a的值.

(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出利用尺规作图完成下面问题:

已知:OAB.

求作:⊙O,使⊙OOAB的边AB相切.

小明的作法如下:

如图,①取线段OB的中点M;以M为圆心,MO为半径作⊙M,与边AB交于点C

②以O为圆心,OC为半径作⊙O

所以,⊙O就是所求作的圆.

请回答:这样做的依据是__________________________________________________

查看答案和解析>>

同步练习册答案