精英家教网 > 初中数学 > 题目详情
1.如图,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=100°,∠AGF=20°,求∠BAC的度数.

分析 根据角平分线的定义求出∠ACE,再根据两直线平行,内错角相等可得∠AFG=∠ACE,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BAC.

解答 解:∵CE平分∠ACD,
∴∠ACE=$\frac{1}{2}$×∠ACD=$\frac{1}{2}$×100°=50°,
∵FG∥CE,
∴∠AFG=∠ACE=50°,
在△AFG中,∠BAC=∠AFG+∠AGF=50°+20°=70°.

点评 本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知点P的坐标是(4,-6),则这个点到x轴的距离是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在平面内⊙O直径为6cm,点P到圆心O的距离为6cm,则点P与⊙O的位置关系是点在圆外.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为45,△ADC的面积为20,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知AD=6,BD=8,AC=26,BC=24,∠ADB=90°.问△ABC是直角三角形吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线EG与AB的交点,连接DE交AC于点F.试说明:△AEF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,已知A(1,-3),B(4,-1),P(a,0),N(a+2,0).请用作图的方式在x轴上确定P、N的位置,使得四边形PABN的周长最小(保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先阅读下列解题过程,再回答问题:
解方程:2x-$\frac{3x+5}{0.2}$=0.4-$\frac{5x-2}{0.5}$
解:原方程可化为2x-$\frac{30x+5}{2}$=0.4-$\frac{50x-2}{5}$①
去分母,得10x-150x-5=4-100x+2,②
合并同类项得-40x=11,③
系数化成1,得x=-$\frac{11}{40}$④
问题:
(1)指出解题过程中的错误的步骤是①②(只填序号)
(2)请给出正确解法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在菱形ABCD中,点E、F分别是AB和BC上的点,且BE=BF,求证:△ADE≌△CDF.

查看答案和解析>>

同步练习册答案