分析 延长AD交BC于E,由AAS证明△ABD≌△EBD,得出AD=ED,得出△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,即可得出结果.
解答 解:延长AD交BC于E,如图所示:![]()
∵BD平分∠ABC,AD垂直于BD,
∴∠ABD=∠EBD,∠ADB=∠EDB=90°,
在△ABD和△EBD中,
$\left\{\begin{array}{l}{∠ABD=∠EBD}&{\;}\\{∠ADB=∠EDB}&{\;}\\{BD=BD}&{\;}\end{array}\right.$,
∴△ABD≌△EBD(AAS),
∴AD=ED,
∴△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,
∴△ABD的面积=△EBD的面积=△BCD的面积-△CDE的面积=45-20=25.
点评 本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AD=ED是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com