精英家教网 > 初中数学 > 题目详情

【题目】如图,分别表示使用一种白炽灯和一种节能灯的费用(费用灯的售价电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是小时,照明效果一样.

1)根据图象分别求出的函数表达式;

2)小亮认为节能灯一定比白炽灯省钱,你是如何想的?

【答案】1的函数表达式为,的函数表达式为;(2)小亮的想法是错误的,若两灯同时点亮,当时,白炽灯省钱;当时,两种灯费用相同;当时,节能灯省钱.

【解析】

1)根据函数图象中的数据可以分别求得l1l2的函数关系式;

2)根据(1)中的函数解析式可以求得两种灯泡费用相同的情况,然后根据图象即可解答本题.

解:(1)设的函数表达式为:代入得

的函数表达式为

的函数表达式为:

代入得

的函数表达式为

2)小亮的想法是错误的,若两灯同时点亮,

,当时,白炽灯省钱;

,当时,两种灯费用相同;

,当时,节能灯省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…….照此规律,画6条不同射线,可得锐角________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是面积为的平行四边形,其中.

1)如图①,点边上任意一点,则的面积的面积之和与的面积之间的数量关系是__________

2)如图②,设交于点,则的面积的面积之和与的面积之间的数量关系是___________

3)如图③,点内任意一点时,试猜想的面积的面积之和与的面积之间的数量关系,并加以证明;

4)如图④,已知点内任意一点,的面积为的面积为,连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,仅用直尺和圆规画一个长方形,使它的面积是图中长方形面积的4.

(2)若新的长方形的长与宽的比为43,且周长为56厘米,求新长方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)

数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:

例如,若数轴上点、点表示的数分别为,则两点之间的距离,线段的中点表示的数为

(问题情境)

在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,两点相遇,且动点运动的速度之比是(速度单位:单位长度/秒).

备用图

(综合运用)

1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;

2)当时,求运动时间;

3)若点在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC三个顶点在⊙O上,直径AB=12,P为弧BC上任意一点(不与B,C重合),直线CP交AB延长线与点Q,2∠PAB+∠PDA=90°,下列结论:①若∠PAB=30°,则弧BP的长为;②若PD//BC,则AP平分∠CAB;③若PB=BD,则,④无论点P在弧上的位置如何变化,CP·CQ为定值. 正确的是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的⊙O中,AB为直径,OC⊥AB,弦CDOB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.

(1)求证:∠1=∠2.

(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

1)求出点A、点B运动的速度,并在数轴上标出AB两点从原点出发运动3秒时的位置;

2)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?

3)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.将线段AB绕点B顺时针旋转90°,得线段A′B,点A的对应点为A′,连接AA′交线段BC于点D.

(Ⅰ)作出旋转后的图形;

(Ⅱ) =   

查看答案和解析>>

同步练习册答案