【题目】已知抛物线y=x2+kx+2k﹣4
(1)当k=2时,求出此抛物线的顶点坐标;
(2)求证:无论k为任何实数,抛物线都与x轴有交点,且经过x轴一定点;
(3)已知抛物线与x轴交于A(x1,0)、B(x2,0)两点(A在B的左边),|x1|<|x2|,与y轴交于C点,且S△ABC=15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.
【答案】(1)顶点坐标为(﹣1,﹣1).(2)证明见解析;(3)(1,﹣6).
【解析】解:(1)当=2时,抛物线为=+,…………………………1分
配方: =+=++1-1
得=-1,
∴顶点坐标为(-1,-1);………………………………………………3分
(也可由顶点公式求得)
(2)令=0,有++-4=0,………………………………4分
此一元二次方程根的判别式
⊿=-4·(-4)=-+16=,…………………5分
∵无论为什么实数, ≥0,
方程++-4=0都有解,…………………………………………6分
即抛物线总与轴有交点.
由求根公式得=,………………………………………………7分
当≥4时, =,
1==-2, 2==-+2;
当<4时, =,
1==-+2, 2==-2.
即抛物线与轴的交点分别为(-2,0)和(-+2,0),
而点(-2,0)是轴上的定点;…………………………………………8分
(3)过A,B,C三点的圆与该抛物线有第四个交点.…………………9分
设此点为D.∵| 1|<| 2|,C点在y轴上,
由抛物线的对称,可知点C不是抛物线的顶点.……………………………10分
由于圆和抛物线都是轴对称图形,
过A、B、C三点的圆与抛物线组成一个轴对称图形.……………………11分
∵轴上的两点A、B关于抛物线对称轴对称,
∴过A、B、C三点的圆与抛物线的第四个
交点D应与C点关于抛物线对称轴对称.……………………………………12分
由抛物线与轴的交点分别为(-2,0)和(-+2,0):
当-2<-+2,即<4时,…………………………13分
A点坐标为(-2,0),B为(-+2,0).
即1=-2, 2=-+2.
由| 1|<| 2|得-+2>2,解得<0.
根据S△ABC=15,得AB·OC=15.
AB=-+2-(-2)=4-,
OC=|2-4|=4-2,
∴(4-)(4-2)=15,
化简整理得=0,
解得=7(舍去)或=-1.
此时抛物线解析式为=,
其对称轴为=,C点坐标为(0,-6),
它关于=的对称点D坐标为(1,-6);………………………………14分
当-2>-+2,由A点在B点左边,
知A点坐标为(-+2,0),B为(-2,0).
即1=-+2, 2=-2.
但此时| 1|>| 2|,这与已知条件| 1|<| 2|不相符,
∴不存在此种情况.
故第四个交点的坐标为(1,-6).
(如图6)
(1)把=2代入抛物线,通过配方可求得此抛物线的顶点坐标
(2)令y=0,解方程++-4,即可求出抛物线与x轴两交点的横坐标,定点为与k值无关的点;
(3)过A、B、C三点的圆与抛物线有第四个交点D,根据A、B、C三点坐标,讨论k的范围,表示△ABC的面积,列方程求k,再根据对称性求D点坐标
科目:初中数学 来源: 题型:
【题目】深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是( )
A.25,26
B.25,26.5
C.27,26
D.25,28
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )
A.三角形
B.线段
C.矩形
D.平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材母题 点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.
(1)用含有x的式子表示S,写出x的取值范围,画出函数S的图象;
(2)当点P的横坐标为5时,△OPA的面积为多少?
(3)△OPA的面积能大于24吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的一元二次方程:(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)若是此方程的实数根,抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B,抛物线的顶点为C,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船以30海里/小时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/小时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区,当轮船到A处时,测得台风中心移到位于点A正南方向的B处,且AB=40海里.
(1)若轮船以原方向、原速度继续航行:
①船长发现,当台风中心到达A处时,轮船肯定受影响,为什么?
②求轮船从A点出发到最初遇到台风的时间;
(2)若轮船在A处迅速改变航线,向北偏东60°的方向的避风港以30海里/小时的速度驶去,轮船还会不会受到影响?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分分)
如图,在中, , , ,将绕点按逆时针方向旋转至, 点的坐标为.
()求点的坐标.
()求过, , 三点的抛物线的解析式.
()在()中的抛物线上是否存在点,使以, , 为顶点的三角形是等腰直角三角形?若
存在,求出所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com