精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线与x轴的交点分别为A、B,与y轴的负半轴交于点C.已知抛物线的顶点坐标为(1,﹣4),点B的坐标(3,0).

(1)求该抛物线的解析式.

(2)在该函数图象上能否找到一点P,使PO=PC?若能,请求出点P的坐标;若不能,请说明理由.

【答案】(1) y=x2﹣2x﹣3(2) 存在,P点坐标为(1+,﹣)或(1,﹣).

【解析】

1)可设出抛物线的顶点式再利用B点坐标可求得抛物线解析式

2)由PO=PC可知点P在线段OC的垂直平分线上则可知P点的纵坐标代入抛物线解析式则可求得P点坐标

1∵抛物线的顶点坐标为(1,﹣4),∴可设抛物线解析式为y=ax124

∵抛物线过点B30),0=a3124解得a=1∴抛物线解析式为y=(x124y=x22x3

2)存在

PO=PC∴点P在线段OC的垂直平分线上y=x22x3x=0可得y=﹣3C0,﹣3),P点纵坐标为﹣y=x22x3y=﹣可得x22x3=﹣解得x=1±P点坐标为(1+,﹣)或(1,﹣).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.

(1)如图①,当点OAC上时,试说明2ACP=B;

(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,中点,,给出四个结论:①;②;③;④,其中成立的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的ABC三个社区积极响应号并购买,具体购买的数和总价如表所示.

社区

甲型垃圾桶

乙型垃圾桶

总价

A

10

8

3320

B

5

9

2860

C

a

b

2820

1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?

2)按要求各个社区两种类型的垃圾桶都要有,则a   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线ABy=﹣x+by轴于点A04),交x轴于点B

1)求直线AB的表达式和点B的坐标;

2)直线l垂直平分OBAB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n

用含n的代数式表示△ABP的面积;

SABP8时,求点P的坐标;

的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,点为坐标原点,的顶点的坐标为,顶点轴上(在点的右侧),点上,连接,且

(1)如图1,求点的纵坐标;

(2)如图2,点轴上(在点的左侧),点上,连接于点;若,求证:

(3)如图3,在(2)的条件下,的角平分线,点与点关于轴对称,过点分别交于点,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点轴的正半轴上.的长分别是二元一次方程组的解().

1)求点和点的坐标;

2)点是线段上的一个动点(点不与点重合),过点的直线轴平行,直线交边或边于点,交边或边于点.设点的横坐标为,线段的长度为.已知时,直线恰好过点

①当时,求关于的函数关系式;

②当时,求点的横坐标的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.

(1)求证:ADE≌△BFE;

(2)若DF平分ADC,连接CE.试判断CE和DF的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案