【题目】如图,
是
的外接圆,
,点
是
外一点,
,
,则线段
的最大值为( )
![]()
A.9B.4.5C.
D.![]()
【答案】C
【解析】
连接OB、OC,如图,则△OBC是顶角为120°的等腰三角形,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,根据等腰三角形的性质和锐角三角函数可得
,于是求OP的最大值转化为求PM的最大值,因为
,所以当P、B、M三点共线时,PM最大,据此求解即可.
解:连接OB、OC,如图,则OB=OC,∠BOC=2∠A=120°,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,
过点O作ON⊥PM于点N,则∠MON=60°,MN=
PM,
在直角△MON中,
,∴
,
∴当PM最大时,OP最大,
又因为
,所以当P、B、M三点共线时,PM最大,此时PM=3+6=9,
所以OP的最大值是:
.
故选:C.
![]()
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)当PA+PB的值最小时,求点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在
中,
,
.点
是平面内不与点
,
重合的任意一点.连接
,将线段
绕点
逆时针旋转
得到线段
,连接
,
,
.
(1)观察猜想
如图1,当
时,
的值是______,直线
与直线
相交所成的较小角的度数是____________.(提示:求角度时可考虑延长
交
的延长线于
)
(2)类比探究
如图2,当
时,请写出
的值及直线
与直线
相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当
时,若点
,
分别是
,
的中点,点
在直线
上,请直接写出点
,
,
在同一直线上时
的值_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
![]()
A. 1或
B. -
或
C.
D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:
(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);
(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,
的三个顶点都在格点上,点
的坐标为
,请解答下列问题:
![]()
(1)画出
关于
轴对称的
,点
的坐标为______;
(2)在网格内以点
为位似中心,把
按相似比
放大,得到
,请画出
;若边
上任意一点
的坐标为
,则两次变换后对应点
的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区平面图如图1所示,
为边界上的点.已知边界
是一段抛物线,其余边界均为线段,且
,抛物线顶点
到
的距离
.以
所在直线为
轴,
所在直线为
轴,建立平面直角坐标系.
![]()
求边界
所在抛物线的解析式;
如图2,该景区管理处欲在区域
内围成一个矩形
场地,使得点
在边界
上,点
在边界
上,试确定点
的位置,使得矩形
的周长最大,并求出最大周长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中BC=2
,以 BC 的中点 O 为圆心的⊙O 分别与 AB,AC 相切于 D,E 两点,
的长为( )
![]()
A.
B.
C.πD.2π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y1=
与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).
(1)求反比例函数和一次函数的表达式;
(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;
(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com