精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,AD,CD分别是△ABC两个外角的平分线。

(1)求证:AC=AD;

(2)若∠B=60°,求证:四边形ABCD是菱形.

 

【答案】

(1)根据三角形外角的性质得到∠CAF=∠B+∠ACB,由AB=AC可得∠B=∠ACB,即可得到∠CAF=2∠B,根据角平分线的性质可得∠CAF=2∠FAD,即可得到∠B=∠FAD,则可得AD//BC,根据平行线的性质可得∠D=∠DCE,再根据角平分线的性质可得∠DCE=∠ACD,即可证得结论;

(2)由△ABC中,AB=AC,∠B=60°可证得△ABC是等边三角形,即得AB=BC=AC,由AD=AC可得AD=BC,再结合AD//BC可证得四边形ABCD是平行四边形,再有AB=BC即可证得结论.

【解析】

试题分析:(1)∵∠CAF是△ABC的外角

∴∠CAF=∠B+∠ACB

∵AB=AC

∴∠B=∠ACB

∴∠CAF=2∠B 

∵AD是△ABC两个外角的平分线

∴∠CAF=2∠FAD 

∴∠B=∠FAD  

∴AD//BC  

∴∠D=∠DCE

∵CD是△ABC外角的平分线

∴∠DCE=∠ACD 

∴AC=AD;

(2)∵△ABC中,AB=AC,∠B=60° 

∴△ABC是等边三角形

∴AB=BC=AC  

∵AD=AC   

∴AD=BC 

又∵AD//BC

∴四边形ABCD是平行四边形

∵AB=BC 

∴四边形ABCD是菱形.

考点:三角形的外角的性质,角平分线的性质,平行四边形的判定和性质,菱形的判定

点评:此类问题是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案