精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CDAB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周长;

(2)求证:直线BE是⊙O的切线.

【答案】(1)8π;(2)证明见解析.

【解析】

1)连接OC设半径为r,在RtOFC中利用勾股定理即可解决问题.
2)只要证明CDEB,即可得到∠AFD=∠ABE90°,由此可以得出结论.

解:(1)连接OC.设半径为r,

OACD,

DF=FC=

RTOFC∵∠OFC=90°,FC=,OF=r﹣3,OC=r,

r2=(r﹣3)2+(2

r=4,

∴⊙O的周长为8π.

(2)证明:∵OACD,

DF=FC,AD=AC,AFD=90°

∴∠ADC=ACD,

∵∠E=ACD,

∴∠ADC=E,

CDEB,

∴∠AFD=ABE=90°,

BE是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线相交于点O,DECA,AEBD.

(1)求证:四边形AODE是菱形;

(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(AB的左侧),y轴交于点C,顶点为D.

(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;

(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?

(3)求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于A -1,0),B 5,0)两点,直线y轴交于点,与轴交于点x轴上方的抛物线上一动点,过点轴于点,交直线于点设点的横坐标为

1)求抛物线的解析式;

2)若,求的值;

3)若点是点关于直线的对称点,是否存在点,使点落在轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:反比例函数和一次函数y=2x-1,其中一次函数的图像经过点A(k,5).

(1)试求反比例函数的解析式;

(2)若点B在第四象限内,且同时在上述两函数的图像上,求B点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在距离铁轨200 mB处,观察从甲地开往乙地的和谐号动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上.10 s后,动车车头到达C处,恰好位于B处的西北方向上,则这列动车的平均车速是________ m/s(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图,则下列四个结论:abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:

学生最喜欢的活动项目的人数统计表

项目

学生数(名)

百分比

丢沙包

20

10%

打篮球

60

p%

跳大绳

n

40%

踢毽球

40

20%

根据图表中提供的信息,解答下列问题:

(1)m= ,n= ,p=

(2)请根据以上信息直接补全条形统计图;

(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.

查看答案和解析>>

同步练习册答案