【题目】已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
A. B. C. D.
【答案】C
【解析】
过点C作CE⊥l4于点E,延长EC交l1于点F,根据同角的余角相等求出∠α=∠DCF,利用两角对应相等的两三角形相似证明△BEC∽△CFD,再由相似三角形对应边成比例可得BE=h,然后在Rt△BCE中利用锐角的正切值等于对边比邻边列式计算即可得解.
如图,过点C作CE⊥l4于点E,延长EC交l1于点F,
在矩形ABCD中,∠BCD=90°,
∵∠α+∠BCE=90°,∠BCE+∠DCF=180°-90°=90°,
∴∠α=∠DCF,
又∵∠BEC=∠CFD=90°,
∴△BEC∽△CFD,
∴,
即,
∴BE=h,
在Rt△BCE中,∵∠BEC=90°,
∴tanα==,
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,过原点O及点A(0,4)、C(12,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒4个单位长度的速度沿x轴正方向移动.设移动时间为t秒.
(1)当点P移动到点D时,求出此时t的值.
(2)当t为何值时,△PQB为直角三角形.
(3)已知过O、P、Q三点的抛物线解析式为y=﹣.问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】放假时小华父子俩一同出发去露营,步行途中小华发现睡袋忘拿了跑步回家取,之后立刻返程跑步追赶爸爸,期间爸爸继续步行去往露营地,会合时爸爸发现还需要探照灯,为节约时间爸爸乘车回家去拿,小华继续步行至露营地,爸爸拿到探照灯后乘车也到了终点(假定步行、跑步和汽车均为匀速,且二人取物品时间忽略不计),二人之间的距离s(米)与他们出发时间t(分钟)之间的关系如图所示,则当爸爸到家时,小华与露营地相距_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,,,,、分别为,上的两动点,从点开始以的速度向点运动,从点开始以的速度向点运动,当一点到达终点时,、两点就同时停止运动.设运动时间为.
(1)用的代数式分别表示和的长;
(2)设的面积为,
①求的面积与的关系式;
②当时,的面积是多少?
(3)当为多少秒时,以点、、为顶点的三角形与相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市教育局在全市中小学推广某学校“品格教育”科研成果,其中“敬老孝亲”是“品格教育”亮点之一. 重阳节(农历九月初九)快到了,某校八年级(1)班班委发起为老人们献上真挚的节日祝福活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.5元买进鲜花,并按每支4.5元卖出.
(1)求同学们卖出鲜花的销售额(元)与销售量(支)之间的函数关系式;
(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金(元)与销售量(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金 = 销售额 - 成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索规律:下列图案是山西晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,随着基本图案的增加所贴剪纸“○”的总个数也在发生变化.
(1)填写下表:
第个图案 | 1 | 2 | 3 | 4 | …… |
“○”的总个数 | …… |
(2)请你写出第个图案中“○”的总个数与之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在矩形中,,,是线段边上的任意一点(不含端点、),连接,过点作交于.
在线段上是否存在不同于的点,使得?若存在,求线段与之间的数量关系;若不存在,请说明理由;
当点在上运动时,对应的点也随之在上运动,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为24m的篱笆,围成长方形的花圃,且花圃的一边为墙体(墙体的最大可用长度为20m)。
设花圃的面积为AB的长为xm.
(1)求y与x函数关系式,并写出x的取值范围;
(2)x为何值时,y取得最大值?最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com