【题目】如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作CPBD,设CPBD的面积为S,点P的横坐标为m.
(1)求抛物线对应的函数表达式;
(2)当点P在第四象限,且CPBD有两个顶点在x轴上时,求点P的坐标;
(3)求S与m之间的函数关系式;
(4)当x轴将CPBD的面积分成1:7两部分时,直接写出m的值.
【答案】(1)y=x2﹣2x﹣3;(2)(2,﹣3); (3)S=3m2﹣9m;
(4)m的值为1或1+或1﹣.
【解析】试题分析:(1)利用交点式求抛物线的解析式;
(2)先确定点D在x轴上,再利用平行四边形的性质可判断PC∥x轴,然后根据抛物线的对称性确定点P的坐标;
(3)作PQ∥y轴交直线BC于Q,如图1,利用待定系数法求出直线BC的解析式为y=x-3,设P(m,m2-2m-3),则Q(m,m-3),讨论:当0<m<3时,如图1,PQ=-m2+3m,利用三角形面积公式和平行四边形的性质得S=2S△PBC=2(S△PQC+S△PQB)=-3m2+9m;当m<0或m>3时,如图2,PQ=m2-3m,同理可得S=2S△PBC=2(S△PBQ-S△PQC)=3m2-9m;
(4)讨论:当点P在x轴下方,如图3,CD交x轴于E,利用已知条件得到S△DEB:S平行四边形CPBD=1:8,再根据平行四边形的性质得S△DEB:S△BCE=1:3,接着根据三角形面积公式得到D点的纵坐标为1,然后利用点平移的坐标规律得到点C向下平移1个单位可得到P点,即P点的纵坐标为-4,则解方程x2-2x-3=-4可得到对应m的值;当点P在x轴上方,如图4,CP交x轴于E,同理可得点P到x轴的距离为1,即P点的纵坐标为1,则通过解方程x2-2x-3=1可得对应m的值.
解:(1)抛物线的解析式为y=(x+1)(x﹣3),
即y=x2﹣2x﹣3;
(2)∵CPBD有两个顶点在x轴上,
∴点D在x轴上,
而BD∥PC,
∴点P和点C为抛物线上的对称点,
而抛物线的对称轴为直线x=1,
∴点P的坐标为(2,﹣3);
(3)作PQ∥y轴交直线BC于Q,如图1,
设直线BC的解析式为y=kx+b,
把C(0,﹣3),B(3,0)代入得,解得,
∴直线BC的解析式为y=x﹣3,
设P(m,m2﹣2m﹣3),则Q(m,m﹣3),
当0<m<3时,如图1,PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m
S=2S△PBC=2(S△PQC+S△PQB)=23(﹣m2+3m)=﹣3m2+9m;
当m<0或m>3时,如图2,PQ=m2﹣2m﹣3﹣(m﹣3)=m2﹣3m
S=2S△PBC=2(S△PBQ﹣S△PQC)=23(m2﹣3m)=3m2﹣9m;
(4)当点P在x轴下方,如图3,CD交x轴于E,
∵x轴将CPBD的面积分成1:7两部分,
∴S△DEB:S平行四边形CPBD=1:8,
∴S△DEB:S△BCD=1:4,
∴S△DEB:S△BCE=1:3,
而OC=3,
∴点D到x轴的距离为1,即D点的纵坐标为1,
∵四边形CPBD为平行四边形,
∴点C向下平移1个单位可得到P点,即P点的纵坐标为﹣4,
当x=﹣4时,x2﹣2x﹣3=﹣4,解得x1=x2=1,则P点坐标为(1,﹣4),
∴m=1;
当点P在x轴上方,如图4,CP交x轴于E,
∵x轴将CPBD的面积分成1:7两部分,
∴S△PEB:S平行四边形CPBD=1:8,
∴S△PEB:S△BCP=1:4,
∴S△PEB:S△BCE=1:3,
而OC=3,
∴点P到x轴的距离为1,即P点的纵坐标为1,
当y=1时,x2﹣2x﹣3=1,解得x1=1+,x2=1﹣,则P点坐标为(1+,1)或(1﹣,1),
∴m=1+或m=1﹣,
综上所述,m的值为1或1+或1﹣.
科目:初中数学 来源: 题型:
【题目】去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;
C.仅家长自己参与; D.家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如表示、在数轴上对应的两点之间的距离;,所以表示、在数轴上对应的两点之间的距离;,所以表示在数轴上对应的点到原点的距离.
一般地,点、点在数轴上分别表示有理数、,那么点、点之间的距离可表示为.
(1)点、、在数轴上分别表示有理数、、,那么点到点的距离与点到点的距离之和可表示为__________(用含绝对值的式子表示).
(2)利用数轴探究:
①满足的的取值范围是__________.
②满足的的所有值是__________.
③设,当的值取在不小于且不大于的范围时,的值是不变的,而且是的最小值,这个最小值是_____.
(3)拓展:
①的最小值为__________.
②的最小值为__________.
③的最小值为__________,此时的取值范围为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将抛物线C1:y=x2绕点(1,0)旋转180°后,得到抛物线C2,定义抛物线C1和C2上位于﹣2≤x≤2范围内的部分为图象C3.若一次函数y=kx+k﹣1(k>0)的图象与图象C3有两个交点,则k的范围是:__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】开通了,中国联通公布了资费标准,其中包月186元时,超出部分国内拨打0.36元/分.由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准.
时间/分 | 1 | 2 | 3 | 4 | 5 | … |
电话费/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?
(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的关系式是什么?
(3)如果打电话超出分钟,需多付多少电话费?
(4)某次打电话的费用超出部分是元,那么小明的爸爸打电话超出几分钟?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com