精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知抛物线y=x2﹣bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)则b= , c=
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式.

【答案】
(1)4;3
(2)解:∵A(0,3),B(1,0),

∴OA=3,OB=1.

∴旋转后C点的坐标为(4,1).

当x=4时,y=x2﹣4x+3=42﹣4×4+3=3,

∴抛物线y=x2﹣4x+3经过点(4,3).

∴将原抛物线沿y轴向下平移2个单位后过点C.

∴平移后的抛物线解析式为y=x2﹣4x+1


【解析】解:(1)已知抛物线y=x2﹣bx+c经过A(0,3),B(1,0)两点,∴ 解得: ,∴b、c的值分别为4,3.故答案是:4;3.
【考点精析】本题主要考查了二次函数图象的平移的相关知识点,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图△ABC中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交交费(元)与用水量(吨)的函数关系如图所示。

(1)分别写出当时,的函数关系式;

(2)若某用户该月用水21吨,则应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一点,EC⊥BC,EC=BD,DF=FE.

求证:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABE△ADC△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为__度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+2x﹣3经过点(1,3)
(1)求a的值;
(2)当x=3时,求y的值;
(3)求这个抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在平面直角坐标系xOy,O是坐标原点,直线l:y=x,A1坐标为(4,0),过点A1x轴的垂线交直线l于点B1以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2再过点A2x轴的垂线交直线l于点B2以原点O为圆心,OB2为半径画弧交x轴正半轴于点A3……按此做法进行下去A2 017的横坐标为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.

(1)求点B的坐标;
(2)求直线BC的解析式;
(3)直线EF:y=2x﹣k(k≠0)交AB于E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,港口A在观测站O的正东方向,OA=4km , 某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为km

查看答案和解析>>

同步练习册答案