精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,在△ABC中,AD⊥BC,垂足为D,AD与BE相交于点H,且BH=AC,DH=DC.
(1)求∠ABC的度数,
(2)BE与AC有怎样的位置关系,请说明理由.

解:(1)∵AD⊥BC,
∴∠BDE=∠ADC=90°,
在Rt△BDE和Rt△ADC中,

∴Rt△BDE≌Rt△ADC(HL),
∴AD=BD,
∴∠BAD=∠ABD,
∵∠ADB=90°,
∴∠ABC=×(180°-90°)=45°.

(2)BE⊥AC,
理由是:∵Rt△BDE≌Rt△ADC,
∴∠CAD=∠HBD,
∵∠ADB=90°,
∴∠HBD+∠BHD=90°,
∵∠BHD=∠AHE,
∴∠AHE+∠CAD=90°,
∴∠AEH=180°-90°=90°,
∴BE⊥AC.
分析:(1)求出∠BDE=∠ADC=90°,根据HL证Rt△BDE≌Rt△ADC,推出AD=BD,推出∠BAD=∠ABD即可.
(2)根据Rt△BDE≌Rt△ADC得出∠CAD=∠HBD,求出∠HBD+∠BHD=90°,即可求出∠AHE+∠CAD=90°,根据三角形内角和定理求出∠AEH=90°,即可得出答案.
点评:本题考查了等腰三角形的判定和性质,三角形的内角和定理,垂直定义,全等三角形的性质和判定的应用,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.全等三角形的对应边相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案