精英家教网 > 初中数学 > 题目详情
7.如果(2x+y-5)2+(x-y-1)2=0,则x+y=3.

分析 根据题意,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出x+y的值.

解答 解:∵(2x+y-5)2+(x-y-1)2=0,
∴$\left\{\begin{array}{l}{2x+y=5①}\\{x-y=1②}\end{array}\right.$,
①+②得:3x=6,
解得:x=2,
把x=2代入①得:y=1,
则x+y=2+1=3,
故答案为:3

点评 此题考查了解二元一次方程组,以及非负数的性质:偶次方,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.解下列不等式(组)
(1)2(x-1)+2<5-3(x+1)
(2)1-$\frac{x-1}{3}$≤$\frac{2x+3}{3}$+x.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤24,且x为整数)出售,可卖出(30-x)件.若利润为y,则y关于x的解析式y=-(x-25)2+25,若利润最大,则最大利润为24元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,已知∠ABC=90°,动点P在射线BC上(点P与点B不重合)移动,△ABE与△APQ均是等边三角形,连结QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF=30°,猜想∠QFC=60°;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=2$\sqrt{3}$,设BP=x,点Q到射线BC的距离为y,请用含x的代数式表示y,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程2-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是(  )
A.a<m<n<bB.m<a<b<nC.a<m<b<nD.m<a<n<b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解下列方程组:
(1)$\left\{\begin{array}{l}\frac{x+1}{5}-\frac{y-1}{2}=-1\\ x+y=2\end{array}\right.$
(2)$\left\{\begin{array}{l}8y+5x=2\\ 4y-3x=-10\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知线段a,c.求作Rt△ABC,使∠C=90°,AB=c,BC=a(尺规作图,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解不等式组$\left\{\begin{array}{l}{2x-1>x+1}\\{x+8>4x-1}\end{array}\right.$,并判断-1,0,$\sqrt{5}$这三个数是不是该不等式组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一个不透明的口袋中装有4个球,其中有2个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好使黄球的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案