精英家教网 > 初中数学 > 题目详情
16.(1)(-2)-1-|-$\sqrt{8}$|+(3.14-π)0+4cos45°
(2)已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.

分析 (1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;
(2)原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式变形后代入计算即可求出值.

解答 解:(1)原式=-$\frac{1}{2}$-2$\sqrt{2}$+1+2$\sqrt{2}$=$\frac{1}{2}$;
(2)原式=x2-4x+4+x2-9=2x2-4x-5=2(x2-2x)-5,
∵x2-2x-7=0,即x2-2x=7,
∴原式=14-5=9.

点评 此题考查了整式的混合运算-化简求值,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.一元二次方程x2-6x-6=0配方后化为(  )
A.(x-3)2=15B.(x-3)2=3C.(x+3)2=15D.(x+3)2=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:

(1)扇形统计图中,初赛成绩为1.65m所在扇形图形的圆心角为54°;
(2)补全条形统计图;
(3)这组初赛成绩的中位数是1.60m;
(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.设数据:1,2,3,4,5的方差为S12,数据:11,12,13,14,15的方差为S22,则S12=S22.(填:“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交BC于点F,连接EF.
(1)求证:EF=CF;
(2)当$\frac{AE}{AD}$=$\frac{1}{3}$时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度.如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在四张背面完全相同的纸牌A、B、C、D中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABC中,∠C=90°,AC=BC=$\sqrt{2}$,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B.
(1)请你在图中把图补画完整;
(2)求C′B的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,我区某中学开展“健康运动”的活动,决定开设“A:乒乓球,B:拔河,C:跳绳,D:篮球”四种运动项目,为了解学生最喜欢哪一种运动项目(每位同学均只选择一项),随机抽取了九年级部分学生,根据调查结果绘制成如图的统计图:
(1)本次共调查了200学生,其中最喜欢跳绳运动项目的学生数为40人;在扇形图中,最喜欢拔河的对应扇形的圆心角大小是54度;
(2)根据以上统计分析,在这四种“健康运动”项目中,学生最喜欢的运动项目是什么?并估计该校1200名学生中喜欢此项目的学生人数.

查看答案和解析>>

同步练习册答案