精英家教网 > 初中数学 > 题目详情
5.如图,已知△ABC中,∠C=90°,AC=BC=$\sqrt{2}$,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B.
(1)请你在图中把图补画完整;
(2)求C′B的长.

分析 (1)根据题意作出图形即可;
(2)连接BB′,延长BC′交AB′于点M;根据全等三角形的性质得到得到∠MBB′=∠MBA=30°;求出BM、C′M的长,即可解决问题.

解答 解:(1)如图1所示,
(2)如图2,连接BB′,延长BC′交AB′于点M;
由题意得:∠BAB′=60°,BA=B′A,
∴△ABB′为等边三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′与△B′BC′中,
$\left\{\begin{array}{l}{AC′=B′C′}\\{AB=B′B}\\{BC′=BC′}\end{array}\right.$,
∴△ABC′≌△B′BC′(SSS),
∴∠MBB′=∠MBA=30°,
∴BM⊥AB′,且AM=B′M;
由题意得:AB2=16,
∴AB′=AB=4,AM=2,
∴C′M=$\frac{1}{2}$AB′=2;由勾股定理可求:BM=2$\sqrt{3}$,
∴C′B=2$\sqrt{3}$-2.

点评 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE.
(1)如图1,已知AC=BC,AD=2CD,
①△ADE与△ABC面积之比;
②求tan∠ECB的值;
(2)如图2,已知$\frac{BC}{AC}$=$\frac{AD}{DC}$=k,求tan∠ECB的值(用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)(-2)-1-|-$\sqrt{8}$|+(3.14-π)0+4cos45°
(2)已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,△DEF的顶点E、F分别在边AC、BC上.
(1)如图1,若AC=BC=4,∠EDF=90°,则EC+CF=4(填数值);
(2)如图2,若∠EDF=90°,△ACB和△DEF相似吗?若相似,请给出证明,若不相似,请说明理由.
(3)如图3,若BC=4,∠DEF=90°,且tan∠EDF=2,设AC=x(8≤x≤10),△DEF的面积为S,写出S关于x的函数解析式,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某校兴趣小组对网上吐糟较为频繁的“医患关系”产生了兴趣,利用节假日在某社区开展了“造成医患关系紧张的原因”的问卷调查.
 造成医患关系紧张的原因(单选)
A.药价高
B.检测项目太多且收费太高
C.住院报销比例低
D.医疗费与个人收入不相称
E.其他
根据调查结果绘制出了如下两幅尚不完整的统计图.

根据以上信息解答下列问题:
(1)这次接受调查的总人数为300人;
(2)在扇形统计图中,“A”所在扇形的圆心角的度数为90°;
(3)补全条形统计图;
(4)若该市有1000万人,请你估计选D的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解不等式组:$\left\{\begin{array}{l}{-x+3≥6(1)}\\{-2x-1≤9(2)}\end{array}\right.$
请结合题意填空,完成本题的解答:
( i)解不等式(1),得x≤-3;
( ii)解不等式(2),得x≥-5;
( iii)把不等式(1)和(2)的解集在数轴上表示出来:

( iv)原不等式的解集为:-5≤x≤-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某校1200名学生参加了全市组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分,三月日人均诵读时间的频数分布直方图.
根据以上信息,解答下列问题:
(1)本次调查的学生数为100人;
(2)图表中的a、b、c的值分别为6,4,4%;
(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多44人;
(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.
     四月日人均诵读时间的统计表                          
日人均诵读时间x/h人数百分比
0≤x≤0.56
 0.5<x≤130
 1<x≤1.550%
 1.5<x≤21010%
2<x≤2.5bc

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)$\sqrt{4}$+($\frac{1}{2}$)-1-cos60°
(2)(2x-y)2-(x+y)(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH的长($\sqrt{3}≈1.73$,要求结果精确得到0.1m)

查看答案和解析>>

同步练习册答案