【题目】一次函数与一次函数在同一平面直角坐标系中的图象大致是( )
A.B.C.D.
【答案】D
【解析】
首先观察一次函数y1=ax+b的图象经过的象限,确定出a、b的取值范围,再考虑另一条的a,b的值,看看是否矛盾即可.
解:A、y1的图像经过第一二三象限,则a>0,b>0;y2的图象经过第一二四象限,则a<0,b<0;两结论矛盾,故A错误;
B、y1的图像经过第一三四象限,则a>0,b<0;y2的图象经过第一二四象限,则a<0,b<0;两结论矛盾,故错误;
C、y1的图像经过第二三四象限,则a<0,b<0;y2的图象经过第二三四象限,则a>0,b<0;两结论矛盾,故错误;
D、y1的图像经过第一二三象限,则a>0,b>0;y2的图象经过第一三四象限,则a>0,b>0;两结论不矛盾,故正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是( )
A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料阅读:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项ax2+bx+c式的配方法.
例如:x2+11x+24=x2+11x++24=
探究发现:
小明发现:
运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
例如: x2+11x+24=x2+11x++24===(x+8)(x+3)
小红发现:运用多项式的配方法能确定一些多项式的最大值或最小值.
x2+11x+24=x2+11x++24=
因为不论x取何值,,所以当,时,多项式x2+11x+24有最小值为
根据以上材料,解答下列问题:
(1)分解因式:x23x10;
(2)试确定:多项式的最值(即最大值或最小值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,每个小方格的边长为一个单位长度.
(1)点的坐标为__________,点的坐标为__________;
(2)点关于轴对称点的坐标为__________;
(3)在直线上找一点,使为等腰三角形,点坐标为__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.
小娟是这样解决的:
如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【问题解决】
已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ =,求sin2β的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P(a,b)是直线y=-x-5与双曲线的一个交点,则以a、b两数为根的一元二次方程是( ).
A. x2-5x+6=0 B. x2+5x+6=0 C. x2-5x-6="0" D. x2+5x-6=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com