精英家教网 > 初中数学 > 题目详情

【题目】如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DEBC;②∠EAC=∠DAB;③EA平分∠DEC;④若DEAC,则∠DEB60°;其中正确结论的个数是( )

A.4B.3C.2D.1

【答案】A

【解析】

由旋转的性质可知,△ABC≌△ADEDEBC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AEAC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=C,根据平角的定义可得∠DEB60°;综上即可得答案.

∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,

∴△ABC≌△ADE

DEBCAE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;

∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE

∴∠EAC=∠DAB;故②正确;

AEAC

∴∠AEC=∠C

∴∠AEC=∠AED

EA平分∠DEC;故③正确;

DEAC

∴∠C=∠BED

∵∠AEC=∠AED=C

∴∠DEB=∠AEC=∠AED =60°,故④正确;

综上所述:正确的结论是①②③④,共4个,

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:

向上点数

1

2

3

4

5

6

出现次数

8

10

7

9

16

10

(1)计算出现向上点数为6的频率.

(2)丙说:如果抛600次,那么出现向上点数为6的次数一定是100次.请判断丙的说法是否正确并说明理由.

(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17121520170726179

1)这组数据的中位数是   ,众数是   

2)计算这10位居民一周内使用共享单车的平均次数;

3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:(1)(x﹣1)(x+3=12;(2)(x﹣32=3﹣x;(33x2+52x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点EABAE,延长ABDE的延长线相交于点F,连接ACCF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BFAD;④SBEFSABC;⑤SCEFSABE;其中正确的有( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格中,△O1A1B1与△OAB是关于点P为位似中心的位似图形.

1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的位似比;

2)以原点O为位似中心,在y轴的右侧画出△OAB的另一个位似△OA2B2,使它与△OAB的位似比为21,并写出点B的对应点B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长是2DE分别是ABAC的中点,延长BC至点F,使CFBC,连接CDEF

1)求证:CDEF

2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

同步练习册答案