精英家教网 > 初中数学 > 题目详情
14.下面命题正确的有(  )
(1)三角形的三条内角平分线的交点叫做三角形的重心
(2)只有一条高在内部的三角形是钝角三角形
(3)等腰三角形两腰上的高相等
(4)等腰三角形一腰上的高与底边的夹角等于底角的一半.
A.1个B.2个C.3个D.4个

分析 根据三角形内心的定义对(1)进行判断;利用直角三角形只有一条高在三角形内部对(2)进行判断;根据等腰三角形的性质对(3)进行判断;根据等腰三角形的性质和三角形内角和定理对(4)进行判断.

解答 解:三角形的三条内角平分线的交点叫做三角形的内心,所以(1)错误;
只有一条高在内部的三角形是钝角三角形或直角三角形,所以(2)错误;
等腰三角形两腰上的高相等,所以(3)正确;
等腰三角形一腰上的高与底边的夹角等于底角的一半,所以(4)正确.
故选B.

点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,矩形AOCB在直角坐标系中,O为原点,C在x轴上,A在y轴上,直线AC的关系式为y=$\frac{3}{4}$x+9,D是OA上的一点,若将矩形AOCB沿CD折叠,点A恰好落在x轴上的A′处.
(1)求AC的长;
(2)求直线A′D的关系式;
(3)设一动点P从点C出发,以每秒1个单位长度的速度沿射线CD方向运动,运动时间为t s.
①当t为何值时,BC=BP?
②在运动过程中,存在以P为圆心的⊙P既与AC相切又与OA相交,请求出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解下列方程:
(1)(x+1)2-9=0
(2)2x2-5x+3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.方程4x2+5x-81=0的一次项系数是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,甲、乙两楼楼顶上的点A和点E与地面上的点C这三点在同一条直线上,点B、D分别在点E、A的正下方且D、B、C三点在同一条直线上,B、C相距30米,D、C相距50米,乙楼高BE为18米,求甲楼高AD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.代数式-7,x,-m,x2y,$\frac{x+y}{2}$,-5ab2c3,$\frac{1}{y}$中,单项式有5个,其中系数为1的有x,x2y,系数为-1的有-m,次数是1的有x,-m,.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读下列计算过程,发现规律,然后利用规律计算:
1+2=$\frac{(1+2)×2}{2}$=3             
$1+2+3=\frac{(1+3)×3}{2}=6$,
$1+2+3+4=\frac{(1+4)×4}{2}=10$
$1+2+3+4+5=\frac{(1+5)×5}{2}=15$;…
(1)猜想:1+2+3+4+…+n=$\frac{n(n+1)}{2}$
(2)利用上述规律计算:1+2+3+4+…+100.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知点M(a,3),B(2,b)关于x轴对称,则a+b的值(  )
A.-5B.5C.-1D.1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知一元二次方程x2-8x+12=0的两个根恰好是等腰三角形ABC的两条边长,则△ABC的周长为14.

查看答案和解析>>

同步练习册答案