精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论:

①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时y1>y2.

其中正确的结论是(  )

A. ①③④ B. ①③ C. ①②④ D.

【答案】B

【解析】

把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.

抛物线y1=(x+1)2+1y2=a(x-4)2-3交于点A(1,3),
3=a(1-4)2-3,
解得:a=,故①正确;
过点EEFAC于点F,
E是抛物线的顶点,
AE=EC,E(4,-3),
AF=3,EF=6,
AE=,AC=2AF=6,
AC≠AE,故②错误;
y=3时,3=(x+1)2+1,
解得:x1=1,x2=-3,
B(-3,3),D(-1,1),
AB=4,AD=BD=2
AD2+BD2=AB2
∴③△ABD是等腰直角三角形,正确;
(x+1)2+1=(x-4)2-3时,
解得:x1=1,x2=37,
∴当37>x>1时,y1>y2,故④错误.
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°,ADBC,垂足为D.给出下列四个结论:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正确的结论有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列推理证明.

如图,已知点DBC延长线上一点,CEAB

求证:∠A+B+ACB180°

证明:∵CEAB

∴∠1   ,(   

2   ,(   

又∠1+2+ACB180°(平角的定义),

∴∠A+B+ACB180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中,∠A140°,∠B120°,∠E90°CPDP分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD__________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式的值:

1-150+250

2

312-(-8)+(-7)-15

4

5(-7) ×(-5)-90÷(-15)

6 |2|(2.5)|14|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,C是O上一点,D在AB的延长线上,且BCD=A.

(1)求证:CD是O的切线;

(2)若O的半径为3,CD=4,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2mA处发出,把球看成点,其运行的高度ym)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m

1)当h=2.6时,求yx的关系式(不要求写出自变量x的取值范围)

2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

3)若球一定能越过球网,又不出边界,求h的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点

1)求反比例函数和一次函数的解析式;

2)求直线AB与x轴的交点C的坐标及AOB的面积;

3)求不等式的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=90°,将三角尺的直角顶点P落在∠AOB的平分线OC的任意一点上,使三角尺的两条直角边与∠AOB的两边分别相交于点EF。证明:PE=PF

查看答案和解析>>

同步练习册答案