精英家教网 > 初中数学 > 题目详情

【题目】按要求完成下列推理证明.

如图,已知点DBC延长线上一点,CEAB

求证:∠A+B+ACB180°

证明:∵CEAB

∴∠1   ,(   

2   ,(   

又∠1+2+ACB180°(平角的定义),

∴∠A+B+ACB180°

【答案】B;两直线平行,同位角相等;∠A;两直线平行,内错角相等.

【解析】

根据平行线的性质得出∠1=∠B,∠2=∠A,即可得出答案.

证明:CEAB

∴∠1B,( 两直线平行,同位角相等)

∠2A,(两直线平行,内错角相等)

∠1+∠2+∠ACB180°(平角的定义),

∴∠A+∠B+∠ACB180°

故答案为:B;两直线平行,同位角相等;∠A;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们将在直角坐标系中圆心坐标和半径均为整数的圆称为整圆.如图,直线l:y=kx+4x轴、y轴分别交于A、B,OAB=30°,点Px轴上,⊙Pl相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等边△ABC中,点ED分别是ACBC边的中点,点PAB边上的一个动点,连接PEPDPCDE,,图1中某条线段的长为y,若表示yx的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点ECDAB的垂线)

A.线段PDB.线段PCC.线段DED.线段PE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y= ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点。

(1)若抛物线的对称轴为直线x= -1,求此抛物线的解析式;

(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;

(3)如果抛物线与x轴交于B、C两点,且∠BAC=90,求此时a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDABOE平分∠AODOFOEOGCD,∠CDO50°,则下列结论:① AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正确结论的个数是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄冈某地杜鹃节期间,某公司70名职工组团前往参观欣赏,旅游景点规定:门票每人60元,无优惠;上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论:

①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时y1>y2.

其中正确的结论是(  )

A. ①③④ B. ①③ C. ①②④ D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)求该班的人数;

(2)请把折线统计图补充完整;

(3)求扇形统计图中,网络文明部分对应的圆心角的度数;

(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

同步练习册答案