精英家教网 > 初中数学 > 题目详情

【题目】如图1,在等边△ABC中,点ED分别是ACBC边的中点,点PAB边上的一个动点,连接PEPDPCDE,,图1中某条线段的长为y,若表示yx的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点ECDAB的垂线)

A.线段PDB.线段PCC.线段DED.线段PE

【答案】D

【解析】

先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.

设等边三角形的边长为1,则0x1

如图1,分别过点E,C,D作垂线,垂足分别为F,G,H

∵点ED分别是ACBC边的中点,根据等边三角形的性质可得,

x=时,线段PE有最小值;

x=时,线段PC有最小值;

x=时,线段PD有最小值;

DE△ABC的中位线为定值

由图2可知,当x=,函数有最小值,故这条线段为PE

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCDEF中,ABDE,点AFCD在同一直线上,AFCD,∠AFE=∠BCD

试说明:

1ABC≌△DEF

2BFEC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,点OAC边上的一个动点,过点O作直线MNBC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F

1)求证:EO=FO

2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°,ADBC,垂足为D.给出下列四个结论:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正确的结论有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EFAB上.

(1)求证:△AED∽△DCG;

(2)若矩形DEFG的面积为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,ABPDCE全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线相交于两点,且抛物线经过点

1)求抛物线的解析式.

2)点是抛物线上的一个动点(不与点重合),过点作直线轴于点,交直线于点.当时,求点坐标;

3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列推理证明.

如图,已知点DBC延长线上一点,CEAB

求证:∠A+B+ACB180°

证明:∵CEAB

∴∠1   ,(   

2   ,(   

又∠1+2+ACB180°(平角的定义),

∴∠A+B+ACB180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2mA处发出,把球看成点,其运行的高度ym)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m

1)当h=2.6时,求yx的关系式(不要求写出自变量x的取值范围)

2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

3)若球一定能越过球网,又不出边界,求h的取值范围。

查看答案和解析>>

同步练习册答案