精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EFAB上.

(1)求证:△AED∽△DCG;

(2)若矩形DEFG的面积为4,求AE的长.

【答案】(1)见解析;(2) .

【解析】

(1)利用等腰三角形的性质及正方形的性质可求得∠A=CDG,DEA=C,则可证得AED∽△DCG;

(2)设AE=x,利用矩形的性质及等腰三角形的性质可求得BF=FG=DE=AE=x,从而可表示出EF,结合矩形的面积可得到关于x的方程,则可求得x的值,即可求得AE的长.

(1)证明:∵△ABC是等腰直角三角形,∠C=90°,

∴∠B=A=45°,

∵四边形DEFG是矩形,

∴∠AED=DEF=90°,DGAB,

∴∠CDG=A,

∵∠C=90°,

∴∠AED=C,

∴△AED∽△DCG;

(2)设AE的长为x,

∵等腰RtABC中,∠C=90°,AC=4,

∴∠A=B=45°,AB=4

∵矩形DEFG的面积为4,

DEFE=4,AED=DEF=BFG=90°,

BF=FG=DE=AE=x,

EF=4-2x,

x(4-2x)=4,

解得x1=x2=

AE的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,∠A=140°D=80°.

(1)如图1,若∠B=C,试求出∠C的度数;

(2)如图2,若∠ABC的角平分线BEDC于点E,且BEAD,试求出∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.

1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AEEF所在的两个三角形全等,但ABEECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证AEMEFC就行了,随即小强写出了如下的证明过程:

证明:如图1,取AB的中点M,连接EM

∵∠AEF=90°

∴∠FEC+AEB=90°

又∵∠EAM+AEB=90°

∴∠EAM=FEC

∵点EM分别为正方形的边BCAB的中点

AM=EC

又可知BME是等腰直角三角形

∴∠AME=135°

又∵CF是正方形外角的平分线

∴∠ECF=135°

∴△AEM≌△EFCASA

AE=EF

2)探究2:小强继续探索,如图2,若把条件E是边BC的中点改为E是边BC上的任意一点其余条件不变,发现AE=EF仍然成立,请你证明这一结论.

3)探究3:小强进一步还想试试,如图3,若把条件E是边BC的中点改为E是边BC延长线上的一点其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.

(1试判断直线CD与⊙O的位置关系,并说明理由;

(2若AD=2,AC=,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:

考试类别

平时考试

期中考试

期末考试

第一单元

第二单元

第三单元

第四单元

成绩(分)

85

78

90

91

90

94

(1)小明6次成绩的众数是   ,中位数是   

(2)求该同学这个同学这一学期平时成绩的平均数;

(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等边△ABC中,点ED分别是ACBC边的中点,点PAB边上的一个动点,连接PEPDPCDE,,图1中某条线段的长为y,若表示yx的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点ECDAB的垂线)

A.线段PDB.线段PCC.线段DED.线段PE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车、运输工具可供选择,两种运输工具的主要参考数据如下:

运输工具

途中平均速度(单位:千米/时)

途中平均费用(单位:元/千米)

装卸时间(单位:小时)

装卸费用(单位:元)

汽车

75

8

2

1000

火车

100

6

4

2000

若这批水果在运输过程中(含装卸时间)的损耗为150/时,设运输路程为x)千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2.

1)分别求出y1y2x的关系式;

2)那么你认为采用哪种运输工具比较好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y= ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点。

(1)若抛物线的对称轴为直线x= -1,求此抛物线的解析式;

(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;

(3)如果抛物线与x轴交于B、C两点,且∠BAC=90,求此时a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有3个完全相同的小球,把它们分别标号为123,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.

(1) 采用树形图法(或列表法)列出两次摸球出现的所有可能结果;

(2) 求摸出的两个球号码之和等于5的概率.

查看答案和解析>>

同步练习册答案