【题目】如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正确结论的个数是( )
A. 1个B. 2个C. 3个D. 4个
【答案】C
【解析】
由CD∥AB,根据两直线平行,内错角相等,即可求得∠BOD的度数,∠AOE的度数;又由OF⊥OE,即可求得∠BOF的度数,得到OF平分∠BOD;又由OG⊥CD,即可求得∠GOE与∠DOF的度数.
∵CD∥AB,
∴∠BOD=∠CDO=50°,
∴∠AOD=180°-∠BOD=130°,
∵OE平分∠AOD,
∴∠AOE=∠AOD=65°;
故①正确;
∵OF⊥OE,
∴∠BOF=90°-∠AOE=25°,
∵∠BOD=50°,
∴OF平分∠BOD;
故②正确;
∵OG⊥CD,CD∥AB,
∴OG⊥AB,
∴∠GOE=90°-∠AOE=25°,
∵∠DOF=∠BOD=25°,
∴∠GOE=∠DOF;
故③正确;
∴∠AOE=65°,∠GOD=40°;
故④错误.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面说法正确的个数有( )
①若 m>n,则;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求完成下列推理证明.
如图,已知点D为BC延长线上一点,CE∥AB.
求证:∠A+∠B+∠ACB=180°
证明:∵CE∥AB,
∴∠1= ,( )
∠2= ,( )
又∠1+∠2+∠ACB=180°(平角的定义),
∴∠A+∠B+∠ACB=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,五边形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD=__________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com