【题目】如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为______.
【答案】2n-1
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△AnBnAn+1的边长为 2n-1.
故答案是:2n-1.
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过M(1,3),N(-2,12)两点.
(1)求函数的解析式;
(2)试判断点P(2a,-6a+8)是否在函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过直线上一点,作,,若,①你还能求出哪些角的度数_____________________(至少写出两个,直角和平角除外);
②与互余的角有__________,它们的数量关系是________;由此你得出的结论是_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在直角三角形ABC中,∠ABC=90,将三角形ABC绕着点B逆时针旋转一定角度得到三角形BEF,EF交BC于点G.
(1)若,当∠ABE等于多少度时,;
(2)若,,,当时,
①求BG的长;
②连接AF交BE于点O,连接AE(如图2),设三角形EOF的面积为m,求三角形AEO的面积(用含m的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△OAB的顶点O为坐标原点,AB∥x轴,OA=2,将等边△OAB绕原点O顺时针旋转105至△OCD的位置,则点D的坐标为( )
A.(2,-2)B.(,)C.(,)D.(,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为10, AB=16, 且B在A的左侧,动点P从点A出发,以每秒3个单位的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数_______
(2)线段AP的长为________(用含t的代数式表示)
(3)若动点Q从B出发,以每秒1个单位的速度沿数轴向右匀速运动,若P,Q同时出发,求运动多少秒时,P、Q相遇?
(4)若动点Q从B出发,以每秒1个单位的速度沿数轴向左匀速运动,若P,Q同时出发, 求点P运动多少秒时追上点Q?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.
(1)求菱形ABCD的周长;
(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;
(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.
【答案】(1)菱形的周长为8;(2)t=,∠MAC=105°;(3)当t=1﹣或t=1+时,圆M与AC相切.
【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.
试题解析:( )如图1所示:过点作,垂足为,
∵, ,
∴, ,
∴,
∵四边形为菱形,
∴,
∴菱形的周长.
()如图2所示,⊙与轴的切线为, 中点为,
∵,
∴,
∵,且为中点,
∴, ,
∴,
解得.
平移的图形如图3所示:过点作,
垂足为,连接, 为⊙与切点,
∵由()可知, , ,
∴,
∴,
∴,
∵四边形是菱形,
∴,
∵为切线,
∴,
∵为的中点,
∴,
∴是等腰直角三角形,
∴,
∴.
()如图4所示:连接,过点作,垂足为,作,垂足为,
∵四边形为菱形, ,
∴.
∵、是圆的切线
∴,
∵。
∴,
∴,
∴.
如图5所示:连接,过点作,垂足为,作,垂足为,
∵四边形为菱形, ,
∴,
∴,
∵、是圆的切线,
∴,
∵,
∴,
∴,
∴.
综上所述,当或时,圆与相切.
点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.
【题型】解答题
【结束】
28
【题目】如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N(0, ).已知抛物线y=ax2+bx+c经过点A,B,C.
(1)求抛物线的函数式;
(2)连接AC,点D在线段BC上方的抛物线上,连接DC,DB,若△BCD和△ABC面积满足S△BCD= S△ABC, 求点D的坐标;
(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com