精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在ABC中,DE分别是边ABBC上的动点,且,连结ADAE,点MNP分别是CDAEAC的中点,设

1)观察猜想

①在求的值时,小明运用从特殊到一般的方法,先令,解题思路如下:

如图1,先由,得到,再由中位线的性质得到

,进而得出PMN为等边三角形,∴

②如图2,当,仿照小明的思路求的值;

2)探究证明

如图3,试猜想的值是否与的度数有关,若有关,请用含的式子表示出,若无关,请说明理由;

3)拓展应用

如图4,点DE分别是射线ABCB上的动点,且,点MNP分别是线段CDAEAC的中点,当时,请直接写出MN的长.

【答案】1)②;(2的值与的度数有关,;(3MN的长为

【解析】

1)②先根据线段的和差求出,再根据中位线定理、平行线的性质得出,从而可得出,然后根据等腰直角三角形的性质即可得;

2)参照题(1)的方法,得出为等腰三角形和的度数,再利用等腰三角形的性质即可求出答案;

3)分两种情况:当点DE分别是边ABCB上的动点时和当点DE分别是边ABCB的延长线上的动点时,如图(见解析),先利用等腰三角形的性质与判定得出,再根据相似三角形的判定与性质得出BCCE的长,由根据等腰三角形的三线合一性得出,从而可得的值,最后分别利用(2)的结论即可得MN的长.

1)②

为等腰直角三角形,

∵点MNP分别是CDAEAC的中点

为等腰直角三角形,

2的值与的度数有关,求解过程如下:

由(1)可知,,即为等腰三角形

如图5,作

中,,即

3)依题意,分以下两种情况:

①当点DE分别是边ABCB上的动点时

如图6,作的角平分线交AB边于点F,并连结BP

,即

,则

解得(不符题意,舍去)

由(2)可知,

PAC上的中点

(等腰三角形的三线合一)

中,,即

②如图7,当点DE分别是边ABCB的延长线上的动点时

同理可得:

综上,MN的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+c与直线yx3交于,B两点,其中点Ay轴上,点B坐标为(﹣4,﹣5),点Py轴左侧的抛物线上一动点,过点PPCx轴于点C,交AB于点D

1)求抛物线对应的函数解析式;

2)以OAPD为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,CEBDECF平分∠DCEDB交于点F

1)求证:BFBC

2)若AB4cmAD3cm,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如 1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到△ABC 和△ACD.并且量得 AB 4cmAC8cm

操作发现:

1)将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图 2 所示的△ACD,过点 C AC′的平行线,与 DC'的延长线 交于点 E,则四边形 ACEC′的形状是

2)创新小组将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转,使 B AD 三点在同一条直线上,得到如图 3 所示的△ACD,连接 CC',取 CC′的中 F,连接 AF 并延长至点 G,使 FGAF,连接 CGCG,得到四边形 ACGC′, 发现它是正方形,请你证明这个结论.

实践探究:

3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A'点,A'C BC′相交于点 H 如图 4 所示,连接 CC′,试求 tanCCH 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点运动的时间是.过点于点,连接

1______.(用含的代数式表示)

2)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由.

3)当为何值时,为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:

(1)求这次调查的家长人数,并补全图1;

(2)求图2中表示家长“赞成”的圆心角的度数;

(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图网格图中,每个小正方形的边长均为1个单位,在RtABC中,∠C90°AC3BC4

1)试在图中作出△ABCA为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1

2)若点B的坐标为(﹣35),试在图中画出直角坐标系,并直接写出AC两点的坐标;

3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进AB两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.

(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求AB两种型号的手机每部进价各是多少元?

(2)为了满足市场需求,商场决定用不超过7.5万元采购AB两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.

①该商场有哪几种进货方式?

②该商场选择哪种进货方式,获得的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?

小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.

下面是小林的探究过程,请补充完整:

1)画出几何图形,明确条件和探究对象;

如图2,在RtABC中,∠C=90°AC=BC=6cmD是线段AB上一动点,射线DEBC于点E,∠EDF=60°,射线DF与射线AC交于点F.设BE两点间的距离为xcmEF两点间的距离为ycm

2)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

4.5

6

(说明:补全表格时相关数据保留一位小数)

3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为 cm

查看答案和解析>>

同步练习册答案