【题目】已知在平面直角坐标系中,一次函数y=
x+3的图象与y轴交于点A,点M在正比例函数y=
x的图象x>0的那部分上,且MO=MA(O为坐标原点).
(1)求线段AM的长;
(2)若反比例函数y=
的图象经过点M关于y轴的对称点M′,求反比例函数解析式,并直接写出当x>0时,
x+3与
的大小关系.
【答案】(1)
(2)当x>0时,
x+3>﹣![]()
【解析】试题分析:(1)求出点A为(0,3),设M的坐标为(m,
m),根据勾股定理求出MA2与MO2,列出方程求出m的值即可.(2)求出M′的坐标,求出反比例函数的解析式,然后求出两图象的交点坐标后即可判断
x+3与
的大小关系
试题解析:(1)令x=0代入y=
x+3中,
∴y=3,
∴A(0,3)
设M(m,
m),其中m>0,
∴由勾股定理可知:MO2=m2+
m2=
m2,
MA2=m2+(
m﹣3)2,
∵MA=MO,
∴
m2=m2+(
m﹣3)2,
∴m=1,
∴M(1,
),
由勾股定理可知:AM=![]()
(2)由题意可知:M′(﹣1,
)
将M′(﹣1,
)代入y=![]()
∴k=﹣![]()
∴联立![]()
解得:x=﹣2![]()
当x>0时,
x+3>﹣
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作
y轴的平行线,与直线AC交于点G(点G在点F的上方).若, ![]()
求点F的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A为某封闭图形边界的一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( ).
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com