精英家教网 > 初中数学 > 题目详情

已知△ABC中,AC边上的高BE与BC边上的高AD交于点H,且BH=AC,则∠ABC=________.

45°
分析:求出△ADC≌△BDH,推出AD=BD,根据等腰三角形性质得出∠ABD=∠BAD,根据三角形内角和定理求出即可.
解答:
解:∵AD、BE是△ABC的高,
∴∠ADC=∠BDH=90°,∠∠BEC=90°,
∴∠C+∠CAD=90°,∠C+∠HBD=90°,
∴∠CAD=∠HBD,
在△HBD和△CAD中,

∴△HBD≌△CAD(AAS),
∴BD=AD,
∵∠ADB=90°,
∴∠ABC=∠BAD=45°,
故答案为:45°.
点评:本题考查了等腰三角形的性质,三角形内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知△ABC中,AC=BC,∠C=Rt∠.如图,将△ABC进行折叠,使点A落在线段BC上(包括点B和点C),设点A的落点为D,折痕为EF,当△DEF是等腰三角形时,点D可能的位置共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD、FE分别交AC,BC于点D,E两点,给出以下个结论:
①CD=BE  
②四边形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四边形CDFE=
12
S△ABC
.当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),
上述结论中始终正确的有
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求证:AB=BC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AC=BC,AD平分∠BAC交BC于D,点E为AB上一点,且∠EDB=∠B,现有下列两个结论:①AB=AD+CD ②AB=AC+CD.
(1)如图1,若∠C=90°,则结论
成立,并证明你的结论.
(2)如图2,若∠C=100°,则结论
成立,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AC=BC,∠ACB=90゜,点P在射线AC上,连接PB,将线段PB绕点B逆时针旋转90゜得线段BN,AN交直线BC于M.
(1)如图1.若点P与点C重合,则
AM
MN
=
1
1
MC
AP
=
1
2
1
2
(直接写出结果):
(2)如图2,若点P在线段AC上,求证:AP=2MC;
(3)如图3,若点P在线段AC的延长线上,完成图形,并直接写出
MC
AP
=
1
2
1
2

查看答案和解析>>

同步练习册答案