精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,点E、F分别是BC,AD上的点,且BE=DF,对角线AC⊥AB.
(1)求证:四边形AECF是平行四边形;
(2)①当E为BC的中点时,求证:四边形AECF是菱形;
(3)②若AB=6,BC=10,当BE长为时,四边形AECF是矩形. ③四边形AECF有可能成为正方形吗?答: . (填“有”或“没有”)

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∵BE=DF,

∴AF=EC,

∴四边形AECF是平行四边形


(2)证明:∵AC⊥AB,

∴∠BAC=90°,

∵E为BC的中点,

∴AE=CE,

∵四边形AECF是平行四边形,

∴四边形AECF为菱形


(3)3.6;没有
【解析】解:(3)②∵四边形AECF是矩形, ∴∠AEC=90°,
∴∠AEB=90°=∠BAC,
∵∠B=∠B,
∴△ABE∽△CBA,
=
∴BE= = =3.6,
所以答案是:3.6;没有.
【考点精析】本题主要考查了平行四边形的判定与性质和正方形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.
(1)写出图中与∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上点A,B,C分别表示有理数a ,b ,c,若ac<0, a+b>0,则原点位于( )

A.点A的左侧
B.点A与点B之间
C.点B与点C之间
D.在点C的右侧

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市公交公司为应对春运期间的人流高峰,计划购买AB两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,

(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?

(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO,已知BD=2
(1)求正方形ABCD的边长;
(2)求OE的长;
(3)①求证:CN=AF;②直接写出四边形AFBO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出下列命题的逆命题并判断它们是真命题还是假命题

(1)如果两个三角形全等那么这两个三角形的面积相等;

(2)等腰三角形的两个底角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,下列结论中不正确的是( )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°它是矩形 D. ACBD它是正方形

查看答案和解析>>

同步练习册答案