精英家教网 > 初中数学 > 题目详情
10.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为36$\sqrt{3}$-54.

分析 设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小,此时△COD是等边三角形,求得三角形PMN和△COD的面积,根据四边形PMON的面积为:$\frac{1}{2}$( S△COD+S△PMN)求得即可.

解答 解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PC、PD.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=6.
∵∠POC=∠POD,
∴OP⊥CD,
∴OQ=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
∴PQ=6-3$\sqrt{3}$
设MQ=x,则PM=CM=3-x,
∴(3-x)2-x2=(6-3$\sqrt{3}$)2,解得x=6$\sqrt{3}$-9,
∵S△PMN=$\frac{1}{2}$MN×PQ,
S△MON=$\frac{1}{2}$MN×OQ,
∴S四边形PMON=S△MON+S△PMN=$\frac{1}{2}$MN×PQ+$\frac{1}{2}$MN×OQ=$\frac{1}{2}$MN×OP=$\frac{1}{2}$×(6$\sqrt{3}$-9)×6=36$\sqrt{3}$-54.
故答案为36$\sqrt{3}$-54.

点评 此题主要考查轴对称--最短路线问题,熟知两点之间线段最短是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形.
②求证:DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.关于x的分式方程$\frac{5}{x}$=$\frac{a}{x-2}$有解,则字母a的取值范围是(  )
A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解下列分式方程:
(1)$\frac{1}{x-2}$=$\frac{1}{3x}$;
(2)$\frac{2-x}{x-3}$+$\frac{1}{3-x}$=1;
(3)$\frac{1}{x+1}$+$\frac{2}{x-1}$=$\frac{4}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是(  )
A.($\frac{1}{2}$)2014B.($\frac{1}{2}$)2015C.($\frac{\sqrt{3}}{3}$)2015D.($\frac{\sqrt{3}}{3}$)2014

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).
(1)求小敏到旗杆的距离DF.(结果保留根号)
(2)求旗杆EF的高度.(结果保留整数,参考数据:$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图所示在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).
(1)设△DPQ的面积为S,求S与t之间的函数关系式;
(2)t为何值时,△DPQ的面积是60;
(3)当t为何值时,四边形PCDQ是平行四边形?
(4)当t为何值时,PD=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,CM=4.在射线CF上取一点A,连接AM并延长交射线OE于点B,作BD⊥OF于点D.
(1)当AC的长度为多少时,△AMC和△BOD相似;
(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示,$\frac{AD}{AB}$=$\frac{AE}{AC}$=$\frac{DE}{BC}$=$\frac{1}{2}$,且△ABC的周长为12,求△ADE的周长.(用比例解)

查看答案和解析>>

同步练习册答案