【题目】解答题
(1)【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF
(2)【类比探究】
如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(3)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.
【答案】
(1)
证明:ED=EC=CF,
∵△BCE绕点C顺时针旋转60°至△ACF,
∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,
∴△CEF是等边三角形,
∴EF=EC,∠CEF=60°,
又∵ED=EC,
∴ED=EF,
∵△ABC是等腰三角形,∠BCA=60°,
∴△ABC是等边三角形,
∴∠CAF=∠CBA=60°,
∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,
∵∠CAF=∠CEF=60°,
∴A、E、C、F四点共圆,
∴∠AEF=∠ACF,
又∵ED=EC,
∴∠D=∠BCE,∠BCE=∠ACF,
∴∠D=∠AEF,
在△EDB和△FEA中,
(AAS)
∴△EDB≌△FEA,
∴DB=AE,BE=AF,
∵AB=AE+BE,
∴AB=DB+AF
(2)
证明:AB=BD﹣AF;
延长EF、CA交于点G,
∵△BCE绕点C顺时针旋转60°至△ACF,
∴∠ECF=60°,BE=AF,EC=CF,
∴△CEF是等边三角形,
∴EF=EC,
又∵ED=EC,
∴ED=EF,∠EFC=∠BAC=60°,
∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,
∴∠FCG=∠FEA,
又∵∠FCG=∠ECD,∠D=∠ECD,
∴∠D=∠FEA,
由旋转的性质,可得
∠CBE=∠CAF=120°,
∴∠DBE=∠FAE=60°,
在△EDB和△FEA中,
(AAS)
∴△EDB≌△FEA,
∴BD=AE,EB=AF,
∴BD=FA+AB,
即AB=BD﹣AF
(3)
证明:如图③,
,
ED=EC=CF,
∵△BCE绕点C顺时针旋转60°至△ACF,
∴∠ECF=60°,BE=AF,EC=CF,BC=AC,
∴△CEF是等边三角形,
∴EF=EC,
又∵ED=EC,
∴ED=EF,
∵AB=AC,BC=AC,
∴△ABC是等边三角形,
∴∠ABC=60°,
又∵∠CBE=∠CAF,
∴∠CAF=60°,
∴∠EAF=180°﹣∠CAF﹣∠BAC
=180°﹣60°﹣60°
=60°
∴∠DBE=∠EAF;
∵ED=EC,
∴∠ECD=∠EDC,
∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,
又∵∠EDC=∠EBC+∠BED,
∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,
∵∠AEF=∠CEF+∠BEC=60°+∠BEC,
∴∠BDE=∠AEF,
在△EDB和△FEA中,
(AAS)
∴△EDB≌△FEA,
∴BD=AE,EB=AF,
∵BE=AB+AE,
∴AF=AB+BD,
即AB,DB,AF之间的数量关系是:
AF=AB+BD
【解析】(1)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,AB=AE+BF,所以AB=DB+AF.(2)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠FCG=∠FEA,再根据∠FCG=∠EAD,∠D=∠EAD,可得∠D=∠FEA;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AB=BD﹣AF即可.(3)首先根据点E在线段BA的延长线上,在图③的基础上将图形补充完整,然后判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判断出∠DBE=∠EAF,∠BDE=∠AEF;最后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AF=AB+BD即可.
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,点C是 的中点,∠COB=60°,过点C作CE⊥AD,交AD的延长线于点E
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是抛物线上两点,则y1<y2 , 其中说法正确的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①画出△ABC关于y轴对称的△A1B1C1;
②画出△ABC关于原点O成中心对称的△A2B2C2;
(2)求△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是等边内一点, .将绕点按顺时针方向旋转得,连接.
(1)求证: 是等边三角形;
(2)当时,试判断的形状,并说明理由;
(3)探究:当为多少度时, 是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com