精英家教网 > 初中数学 > 题目详情

【题目】 Rt 中, ,点 为射线 上一点,连接 ,过点 作线段 的垂线 ,在直线 上,分别在点 的两侧截取与线段 相等的线段 ,连接

1)当点 在线段 上时(点 不与点 重合),如图1

①请你将图形补充完整;

②线段 所在直线的位置关系为 ,线段 的数量关系为

2)当点 在线段 的延长线上时,如图2

①请你将图形补充完整;

②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.

【答案】1)①见详解,②垂直、相等;(2)①见详解,②成立,理由见详解

【解析】

1)①D在线段AB上时,在直线l上截取CE=CF=CD,即可画出图象.②在图1中证明△ACD≌△BCF得到AD=BF,∠BAC=FBC,利用∠ABF=ABC+FBC=ABC+BAC=90°,即BFAD
2)①D在线段AB延长线上时,在直线l上截取CE=CF=CD,即可画出图象.②在图2中证明△ACD≌△BCF得到AD=BF,∠BAC=FBC,利用∠ABF=ABC+FBC=ABC+BAC=90°,即BFAD

解:(1)①见图1所示.

②证明:∵CDEF
∴∠DCF=90°,
∵∠ACB=90°,
∴∠ACB=DCF
∴∠ACD=BCF
BC=ACCD=CF
∴△ACD≌△BCF
AD=BF,∠BAC=FBC
∴∠ABF=ABC+FBC=ABC+BAC=90°,
BFAD
故答案为:垂直、相等.

2)①见图2所示.


②成立.理由如下:
证明:∵CDEF
∴∠DCF=90°,
∵∠ACB=90°,
∴∠DCF+BCD=ACB+BCD
即∠ACD=BCF
BC=ACCD=CF
∴△ACD≌△BCF
AD=BF,∠BAC=FBC
∴∠ABF=ABC+FBC=ABC+BAC=90°,
BFAD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某海尔专卖店春节期间,销售10型号洗衣机和20型号洗衣机的利润为4000元,销售20型号洗衣机和10型号洗衣机的利润为3500元.

(1)求每台型号洗衣机和型号洗衣机的销售利润;

(2)该商店计划一次购进两种型号的洗衣机共100台,其中型号洗衣机的进货量不超过型号洗衣机的进货量的2倍,问当购进型号洗衣机多少台时,销售这100台洗衣机的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点CCEx轴于点E,记四边形OBCE的面积为S1OBD的面积为S2,若,则CD的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列六个命题:①相等的角是对顶角;②两直线平行,同位角相等;③若一个三角形的两个内角分别为,则这个三角形是直角三角形;④全等三角形的对应角相等。其中逆命题是假命题的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),经过点的直线轴交于点,与抛物线的另一个交点为,且

直接写出点的坐标,并求直线的函数表达式(其中用含的式子表示);

是直线上方的抛物线上的一点,若的面积的最大值为,求的值;

是抛物线对称轴上的一点,点在抛物线上,以点为顶点的四边形能否成为矩形?若能,求出点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂线平分线交AB于点F,交BC的延长线于点E,连接AE,DF.

求证:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCABACDEAB于点EDFAC于点FBDCD

求证:DEDF

证明:∵ABAC

∴∠B=∠C   ),

DEABDFAC

∴∠BED=∠DFC90°

BDECDF

∴△BDE≌△CDF   ).

DEDF   

1)请在括号里写出推理的依据.

2)请你写出另一种证明此题的方法.

查看答案和解析>>

同步练习册答案