精英家教网 > 初中数学 > 题目详情

【题目】如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点CCEx轴于点E,记四边形OBCE的面积为S1OBD的面积为S2,若,则CD的长为____

【答案】

【解析】

根据梯形与三角形的面积比,设出未知数,再因式分解求出所满足的比例关系进行求解.

过点CCNy轴于点N BN的长度设为a 过点DDMx轴于点M

DM的长度设为b SOBCE==

SOBD== 化简变形得12a2+17ab-7b2=0

对其因式分解得(3a-b)(4a+7b)=0 b=3a

C(-a,4a) -a*4a=-4 a=1 CD==5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】张老师给爱好学习的小军和小俊提出这样一个问题:如图,在ABC中,AB=AC,点P为边BC上的任一点,过点PPDABPEAC,垂足分别为DE,过点CCFAB,垂足为F.求证:PD+PE=CF

小军的证明思路是:如图2,连接AP,由ABPACP面积之和等于ABC的面积可以证得:PD+PE=CF

小俊的证明思路是:如图2,过点PPGCF,垂足为G,可以证得:PD=GFPE=CG,则PD+PE=CF

【变式探究】如图,当点PBC延长线上时,其余条件不变,求证:PDPE=CF;请运用上述解答中所积累的经验和方法完成下题:

【结论运用】如图,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点PPGBEPHBC,垂足分别为GH,若AD=8CF=3,求PG+PH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】y是关于x的一次函数,其图象与y轴交点的纵坐标为﹣10,且当x1时,y=﹣5

1)求该一次函数图象与坐标轴围成的三角形面积;

2)当函数值为时,自变量的取值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)【问题发现】

如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为   

(2)【拓展研究】

在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

(3)【问题发现】

当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC90°AD⊥BCD,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD位于直角坐标系中,AB=2,点D(0,1),以点C为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.

(1)求点A,B,C的坐标.

(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.

MN的长.

P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°AQ,则OQ的最小值为   (直接写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角形三角板如图 1 所示放置,图 2 是由它抽像出的几何图形,B, C, E在同一 条直线上,连结DC.

(1)请找出图 2 中的全等三角形,并给予证明(说明:结论中不得含有未标识的字 );

(2)证明:DC ⊥ BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 Rt 中, ,点 为射线 上一点,连接 ,过点 作线段 的垂线 ,在直线 上,分别在点 的两侧截取与线段 相等的线段 ,连接

1)当点 在线段 上时(点 不与点 重合),如图1

①请你将图形补充完整;

②线段 所在直线的位置关系为 ,线段 的数量关系为

2)当点 在线段 的延长线上时,如图2

①请你将图形补充完整;

②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在五边形ABCDE 中,,点 A 到直线CD 的距离为__________

查看答案和解析>>

同步练习册答案