【题目】如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】解:①∵BE⊥AC,AD⊥BC,∴∠AEH=∠ADB=90°.
∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE,∴∠HBD=∠EAH.
∵DH=DC,∴△BDH≌△ADC(AAS),∴BD=AD,BH=AC;
②∵BC=AC,∴∠BAC=∠ABC.
由①知,在Rt△ABD中,∵BD=AD,∴∠ABC=45°,∴∠BAC=45°,∴∠ACB=90°.
∵∠ACB+∠DAC=90°,∠ACB<90°,∴结论②为错误结论.
③由①证明知,△BDH≌△ADC,∴BH=AC;
④∵CE=CD,∠ACB=∠ACB;∠ADC=∠BEC=90°,∴△BEC≌△ADC,由于缺乏条件,无法证得△BEC≌△ADC,∴结论④为错误结论.
综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.
故选B.
科目:初中数学 来源: 题型:
【题目】已知函数.
()分别取, , 时,试求出各函数表达式,并说出这三个函数的一个共同点.
()对于任意负实数,当时, 随的增大而增大,试求出的最大整数值.
()点, 是函数图象上两个点,满足若,试比较和的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).
(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在同一平面直角坐标系中,正比例函数与二次函数y=-x2+2x+c的图象交于点A(-1,m).
(1)求m,c的值;
(2)求二次函数图象的对称轴和顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.
(1)直接写出点C的坐标.
(2)在y轴上是否存在点P,使得S△POB=S△ABC若存在,求出点P的坐标;若不存在,请说明理由.
(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点点的坐标分别为,且将线段绕点逆时针旋转得到线段.
(1)直接写出 __,__ _,点的坐标为 _;
(2)如图2,作轴于点点是的中点,点在内部,求证:
(3)如图3,点是第二象限内的一个动点,若求线段的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划组织师生共435人参加一次大型公益活动,如果租用5辆小客车和6辆大客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多12个.
(1) 求每辆小客车和每辆大客车的乘客座位数;
(2) 由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场准备购进甲.乙两种商品,若购进甲商品80个,乙商品40个,需要800元;若购进甲商品50个,乙商品30个,需要550元.
(1)求商场购进甲.乙两种商品每个需要多少元?
(2)商场准备1000元全部用来购进甲.乙两种商品,计划销售每个甲种商品可获利润4元,销售每个乙种商品可获利润5元,销售这两种玩具的总利润不低于600元,那么商场最多购进乙种商品多少个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com