精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.

【答案】证明:∵四边形ABCD是平行四边形,
∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,
又∵ED=BF,
∴AD﹣ED=BC﹣BF,即AE=CF,
在△AEO和△CFO中,
∴△AEO≌△CFO,
∴OA=OC.
【解析】根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一个长为、宽为的长方形(其中均为正数,且),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图方式拼成一个大正方形.

如图是一个长为、宽为的长方形(其中均为正数,且),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图方式拼成一个大正方形.

你认为图中大正方形的边长为________;小正方形(阴影部分)的边长为________.(用含的代数式表示)

仔细观察图,请你写出下列三个代数式:所表示的图形面积之间的相等关系,并选取适合的数值加以验证.

已知.求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1) (2)

(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)

(5) (6)(-+)×(-36)

(7) (8)—(用简便方法计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:)依先后次序记录如下:

将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?

出租车在行驶过程中,离鼓楼最远的距离是多少?

出租车按物价部门规定,起步价(不超过千米)为元,超过千米的部分每千米的价格为元,司机一个下午的营业额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有(  )

A. x1x2x3 B. x1x3x2 C. x2x3x1 D. x3x2x1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量(毫克/百毫升)与时间(时)成正比例;1.5小时后(包括1.5小时)成反比例.根据图中提供的信息,解答下列问题:

(1)求一般成人喝半斤低度白酒后, 之间的两个函数关系式及相应的自变量 取值范围;

(2)依据人的生理数据显示,当≥80时,肝部正被严重损伤,请问喝半斤低度白酒后,肝部被严重损伤持续多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q′恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围;
(3)S能否为 cm2?若能,求出此时的t值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.

(1)甲、乙两队单独完成此项任务各需多少天?

(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点EF分别在边BCCD上,且∠EAF=∠CEF=45°.

(1)延长CBG点,使得BG=DF (如图①),求证:△AEG≌△AEF

(2)若直线EFABAD的延长线分别交于点MN(如图②),求证:EF2=ME2+NF2

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EFBEDF之间的数量关系.

查看答案和解析>>

同步练习册答案