精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q′恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围;
(3)S能否为 cm2?若能,求出此时的t值;若不能,说明理由.

【答案】
(1)

解:连接QQ′,

∵PC=QC,∠C=90°,

∴∠CPQ=45°,又l⊥AC,

∴∠RPQ=∠RPC﹣∠CPQ=90°﹣45°=45°,

由对称可得PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,

∴∠BQQ′=∠BCA,又∠B=∠B,

∴△BQQ′∽△BCA,

= ,即 =

解得:t=2.4;


(2)

解:当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,

又∵RP∥BC,

∴△RPA∽△BCA,

,即 =

∴RP=(8﹣t) =

∴S= RPQ′D= t=﹣ t2+3t;

当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,

由对称可得:∠DPE=∠DEP=45°,

又∵∠PDE=90°,

∴△DEP为等腰直角三角形,

∴DP=DE,

∵△RDE∽△BCA,

= = ,即DR= DE,

∵△RPA∽△BCA,

,即 =

∴RP=

∴RP=RD+DP=DR+DE=DE+ DE= ,即 DE=

∴DE=

∴S= RPDE= = t2 t+


(3)

解:S能为 cm2,理由为:

t2 t+ = (2.4<t≤6),

整理得:t2﹣16t+57=0,

解得:t= =8±

∴t1=8+ (舍去),t2=8﹣

若﹣ t2+3t= (0<t≤2.4),

整理得:t2﹣8t+3=0,

解得:t= =4±

∴t1=4+ (舍去),t2=4﹣

综上,当S为 cm2时,t的值为(8﹣ )或(4﹣ )秒


【解析】(1)如图所示,连接QQ′,由题意得到三角形PQC为等腰直角三角形,可得出∠CPQ=45°,再由l与AC垂直,得到∠RPQ也为45°,进而由对称性得出PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,由平行得到一对同位角相等,再由公共角相等,利用两对对应角相等的两三角形相似得到△BQQ′∽△BCA,由相似得比例,将各自的值代入列出关于t的方程,求出方程的解即可得到此时t的值;(2)由(1)求出t的值,分两种情况考虑:当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,由RP与BC平行,利用两直线平行得到两对同位角相等,利用两对对应角相等的两三角形相似得到△RPA∽△BCA,由相似得比例表示出RP,利用三角形的面积公式表示出S关于t的关系式即可;当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称性得到由对称可得:∠DPE=∠DEP=45°,可得出三角形DEP为等腰直角三角形,得到DE=DP,由△RDE∽△BCA,利用相似得比例,表示出DR,再由△RPA∽△BCA,由相似得比例,表示出RP,由RP=RD+DP=RD+DE,将表示出的DR及RP代入,表示出DE,利用三角形的面积公式即可表示出S与t的关系式;(3)S能为 cm2 , 具体求法为:当0<t≤2.4时,令S= ,得出关于t的一元二次方程,求出方程的解得到t的值;当2.4<t≤6时,令S= ,得出关于t的一元二次方程,求出方程的解得到t的值,经检验得到满足题意t的值.
【考点精析】掌握求根公式和勾股定理的概念是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小梅将边长分别为长的若干个正方形按一定规律拼成不同的长方形,如图所示.

求第四个长方形的周长;

时,求第五个长方形的面积.(用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点OAC边上的一个动点,过点O作直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)判断OEOF的大小关系?并说明理由?

(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.

(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:

分组

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~100.5

合计

频数

2

a

20

16

4

50

频率

0.04

0.16

0.40

0.32

b

1

(1)频数、频率分布表中a=  ,b=  ;(答案直接填在题中横线上)

(2)补全频数分布直方图;

(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )

A.80°
B.90°
C.100°
D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12,则正方形与其外接圆形成的阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

同步练习册答案