精英家教网 > 初中数学 > 题目详情

【题目】如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=D=60°,FAD=45°,则∠CFE的度数为(  )

A. 30° B. 45° C. 60° D. 75°

【答案】B

【解析】首先证明ABE≌△ACF,然后推出AE=AF,证明AEF是等边三角形,最后可求出∠AFD,CFE的度数.

连接AC,

∵菱形ABCD,AB=BC,B=D=60°,

∴△ABC为等边三角形,∠BCD=120°

AB=AC,ACF=BCD=60°,

∴∠B=ACF,

∵△ABC为等边三角形,

∴∠BAC=60°,即∠BAE+EAC=60°,

又∠EAF=60°,即∠CAF+EAC=60°,

∴∠BAE=CAF,

ABEACF中,

∴△ABE≌△ACF(ASA),

AE=AF,

又∠EAF=D=60°,则AEF是等边三角形,

∴∠AFE=60°,

又∠AFD=180°-45°-60°=75°,

则∠CFE=180°-75°-60°=45°.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1A、B两点,并与过A点的直线y=﹣x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点My轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面推理过程:

如图,已知∠1 =∠2,∠B =∠C,可推得ABCD.理由如下:

∵∠1 =∠2(已知),

且∠1 =∠CGD______________________ ),

∴∠2 =∠CGD(等量代换).

CEBF___________________________).

∴∠ =∠C__________________________).

又∵∠B =∠C(已知),

∴∠ =∠B(等量代换).

ABCD________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路上A,B两点相距25km,C,D为两庄,DAABA,CBABB,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:

(1)在离A站多少km处?

(2)判定三角形DEC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)观察推理:如图1,△ABC中,∠ACB=90°AC=BC,直线l过点C,点AB在直线l同侧,BDlAEl垂足分别为DE.

求证:△AEC≌△CDB;

2)类比探究:如图2RtABC中,∠ACB=90°AC=6,将斜边AB绕点A逆时针旋转90°AB,连接BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(4,﹣5).

(1)求这个二次函数的解析式;

(2)求这个二次函数的最值;

(3)若设这个次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB时等腰三角形,求出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,BAC=90°.

(1)当点D在线段BC上时(不与点B重合),线段CFBD的数量关系与位置关系分别是什么?请给予证明.

(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作RtABC,边BCx轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若BCE的面积为4,则k=______

查看答案和解析>>

同步练习册答案