精英家教网 > 初中数学 > 题目详情

【题目】如图,铁路上A,B两点相距25km,C,D为两庄,DAABA,CBABB,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:

(1)在离A站多少km处?

(2)判定三角形DEC的形状.

【答案】(1)10km;(2) DEC是直角三角形,理由见解析.

【解析】分析:(1)根据使得CD两村到E站的距离相等,需要证明,再根据得出
(2)的形状是直角三角形,利用,得出,进而可以证明.

详解:(1)∵使得CD两村到E站的距离相等.

DE=CE

DAABACBABB

AE=x,BE=ABAE=(25x),

DA=15kmCB=10km

解得:x=10,

AE=10km

(2)DEC是直角三角形,理由如下:

DAEEBC

∴∠DEA=ECBADE=CEB

DEC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.

(1)求证:△AEH≌△CFG;

(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程

(1) (2)

(3) (4)

(5) [()-4]=x+2 (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx-5的图象经过点A(2,-1).

(1)求k的值;

(2)画出这个函数的图象;

(3)若将此函数的图象向上平移m个单位后与坐标轴围成的三角形的面积为1,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB=3BC=5B=60°GCD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.

1)求证:四边形CEDF是平行四边形;

2 AE= 时,四边形CEDF是矩形;

AE= 时,四边形CEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式

(1)﹣(﹣5)﹣(+7)

(2)|﹣5﹣8|+24÷(﹣3)

(3)﹣0.25÷(﹣×(1﹣

(4)36×

(5)1÷[﹣(﹣1+14

(6)23﹣(1﹣0.5)××[2﹣(﹣3)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所示的正方形网格中,△ABC的顶点均在格点上,在所给平面直角坐标系中解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1
(2)作出将△ABC绕原点O按逆时针方向旋转90°后所得的△A2B2C2
(3)写出点A1、A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个能被13整除的自然数我们称为十三数”,“十三数的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357十三数”.

(1)判断3253254514是否为十三数,请说明理由.

(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为间同数”.

求证:任意一个四位间同数能被101整除.

若一个四位自然数既是十三数,又是间同数,求满足条件的所有四位数的最大值与最小值之差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,矩形ABCD中,OAC中点,过点O的直线分别与ABCD交于点EF,连结BFAC于点M,连结DEBO.若∠COB=60°FO=FC,则下列结论:①FB垂直平分OC②△EOB≌△CMB③DE=EF④SAOESBCM=23.其中正确结论的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步练习册答案