【题目】如图,P(m,n)是抛物线y=﹣+1上任意一点,l是过点(0,2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H,PH交x轴于Q.
(1)(探究)填空:当m=0时,OP= ,PH= ;当m=4时,OP= ,PH= .
(2)(证明)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
(3)(应用)当OP=OH,且m≠0时,求P点的坐标.
【答案】(1)1,1,5,5;(2)OP=PH;(3)P(2,﹣2)或(﹣2,﹣2).
【解析】
(1)根据勾股定理,可得OP的长,根据点到直线的距离,可得可得PH的长;
(2)根据图象上的点满足函数解析式,可得点的坐标,根据勾股定理,可得PO的长,根据点到直线的距离,可得PH的长;
(3)当OP=OH,且m≠0时,由(2)可知△OPH是等边三角形,进而求得∠HOQ=30°,解直角三角形即可求得.
解:(1)当m=0时,P(0,1),OP=1,PH=2﹣1=1;
当m=4时,y=﹣3,P(4,﹣3),OP==5,PH=2﹣(﹣3)=5,
故答案为:1,1,5,5;
(2)猜想:OP=PH,
证明:PH交x轴与点Q,
∵P在y=﹣x2+1上,
∴设P(m,﹣m2+1),PQ=|﹣x2+1|,OQ=|m|,
∵△OPQ是直角三角形,
∴OP====m2+1,
PH=2﹣yp=2+m2﹣1=m2+1
OP=PH.
(3)∵OP=PH,
∴当OP=OH,三角形OPH是等边三角形,
∵OQ⊥PH,
∴∠HOQ=30°,
∴OQ=HQ=2,
∴P点的横坐标为±2,
∴P(2,﹣2)或(﹣2,﹣2).
科目:初中数学 来源: 题型:
【题目】操作:如图,在正方形 ABCD 中,P 是 CD 上一动点(与 C,D 不重合),使三角板的直角顶点与点 P 重合,并且一条直角边始终经过点 B,另一直角边与正方形的某一边所在直线交于点 E.
(1)根据操作结果,画出符合条件的图形;
(2)观察所画图形,写出一个与△BPC 相似的三角形,并说明理由;
(3)当点 P 位于 CD 的中点时,直接写出(2)中两对相似三角形的相似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.
(1)求抛物线的解析式;
(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;
(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.
(1)求抛物线的解析式;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;
(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.
(1)画出将△ABC向右平移2个单位得到△A1B1C1.
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2.
(3)在x轴上找一点P,满足点P到点C1与C2距离之和最小,并求出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com