精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,边上的一点,,交边于

1是等腰三角形吗?请说明理由;

2)连结,当 度时,是等边三角形.

【答案】1)是,详见解析;(260

【解析】

1)证明Rt△BDE≌Rt△CFD,得到∠B=∠C,利用等角对等边即可解答;
2)根据Rt△BDE≌Rt△CFD,得到DE=DF,当∠EDF=60°时,△DEF是等边三角形(有一个角是60°的等腰三角形是等边三角形),再分别求出∠DFC∠C,利用三角形的内角和为180°,即可解答.

解:(1∵DE⊥BCDF⊥ACF
∴∠BDE=90°∠DFC=90°
Rt△BDERt△CFD中,


∴Rt△BDE≌Rt△CFD
∴∠B=∠C
∴AB=AC

△ABC是等腰三角形.
2)如图,

∵Rt△BDE≌Rt△CFD
∴DE=DF
∠EDF=60°时,△DEF是等边三角形(有一个角是60°的等腰三角形是等边三角形),
∴∠CDF=90°-∠EDF=30°
∴∠C=90°-∠DFC=60°
∴∠B=∠C=60°
∴∠A=180°-∠B-∠C=60°
故答案为:60

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读一段文字,再回答下列问题:已知在平面内两点的坐标为,则该两点间距离公式为.同时,当两点在同一坐标轴上或所在直线平行于轴、平行于轴时,两点间的距离公式可化简成

1)若已知两点,试求两点间的距离;

2)已知点在平行于轴的直线上,点的纵坐标为7,点的纵坐标为,试求两点间的距离;

3)已知一个三角形各顶点的坐标为,你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的两条角平分线BD、CE交于O,且A=60°,则下列结论中不正确的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P(m,n)是抛物线y=﹣+1上任意一点,l是过点(0,2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H,PH交x轴于Q.

(1)(探究)填空:当m=0时,OP=   ,PH=   ;当m=4时,OP=   ,PH=   

(2)(证明)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.

(3)(应用)当OP=OH,且m≠0时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,ABACAB的垂直平分线交线段ACD,若△ABC和△DBC的周长分别是60 cm38 cm,则△ABC的腰长和底边BC的长分别是( )

A. 22cm16cmB. 16cm22cm

C. 20cm16cmD. 24cm12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCECD均为等边三角形,BCD三点在一直线上,ADBE相交于点FDF=3,AF=4,则线段FE的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序

号是___________

查看答案和解析>>

同步练习册答案