精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序

号是___________

【答案】②③④.

【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解:(1)①由抛物线的开口方向向上可推出a>0,正确;
②因为对称轴在y轴右侧,对称轴为x=->0,又因为a>0,∴b<0,错误;
③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;
④由图象可知:当x=1时y=0,∴a+b+c=0,正确.
故(1)中,正确结论的序号是①④.
(2)①∵a>0,b<0,c<0,∴abc>0,错误;
②由图象可知:对称轴x=->0且对称轴x=-<1,∴2a+b>0,正确;
③由图象可知:当x=-1时y=2,∴a-b+c=2,当x=1时y=0,∴a+b+c=0;
a-b+c=2与a+b+c=0相加得2a+2c=2,解得a+c=1,正确;
④∵a+c=1,移项得a=1-c,又∵c<0,∴a>1,正确.
故(2)中,正确结论的序号是②③④.

“点睛”二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=-判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cabc为常数,且a≠0)经过A、B、C、D四个点,其中横坐标x与纵坐标y的对应值如下表:

A

B

C

D

x

-1

0

1

3

y

-1

3

5

3

(1)求二次函数解析式;

(2)求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中, ,点 分别在射线上(点不与点、点重合),且保持.

①若点在线段上(如图),且,求线段的长;

②若 ,求之间的函数关系式,并写出自变量的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+bx+cx轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;

(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:a-4a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】am=2bm=3,则(abm=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):

为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.

(1)求y关于x的函数关系式;

(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.

(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈ ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙OABC的内切圆,切点分别为DEF .

1)求∠BOC的度数;

2)求∠EDF的度数.

查看答案和解析>>

同步练习册答案