精英家教网 > 初中数学 > 题目详情

【题目】某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):

为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.

(1)求y关于x的函数关系式;

(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.

【答案】(1)且x为整数);(2)9档次,1210万元.

【解析】(1)根据总利润=日产量×单件利润即可得到答案;

(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.

解:(1),( 且x为整数).

(2)∵

又∵且x为整数,∴当时,函数取得最大值1210.

答:工厂为获得最大利润,应生产第9档次的产品,当天的最大利润为1210万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:(﹣3x+1)(﹣2x)2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某测量人员的眼睛A与标杆顶端F、电视塔顶端E在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m,标杆FC=2.2m,且BC=1m,CD=5m,标杆FCED垂直于地面.求电视塔的高ED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序

号是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)当t为何值时,△ACM的面积最大?最大值为多少?

(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式从左到右的变形,属于因式分解的是(  )

A.8x2 y32x24 y3B. x+1)( x1)=x21

C.3x3y13 xy)﹣1D.x28x+16=( x42

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:8a2﹣2=

查看答案和解析>>

同步练习册答案