精英家教网 > 初中数学 > 题目详情

如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;

(2)求证:四边形BFDE为矩形.


证明:(1)∵DE⊥AB,BF⊥CD,

∴∠AED=∠CFB=90°,

∵四边形ABCD为平行四边形,

∴AD=BC,∠A=∠C,

在△ADE和△CBF中,

∴△ADE≌△CBF(AAS);

(2)∵四边形ABCD为平行四边形,

∴CD∥AB,

∴∠CDE+∠DEB=180°,

∵∠DEB=90°,

∴∠CDE=90°,

∴∠CDE=∠DEB=∠BFD=90°,

则四边形BFDE为矩形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


计算:﹣3+4的结果等于(  )

    A.7                     B. ﹣7                       C.                             1    D.   ﹣1

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为  

 

查看答案和解析>>

科目:初中数学 来源: 题型:


下列运算正确的是(  )

    A.a+2a=2a2          B. +=          C.                             (x﹣3)2=x2﹣9    D. (x23=x6

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为(  )

    A.36°                  B. 60°                        C.                             72° D.   108°

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;

(2)问:当t为何值时,△APQ为直角三角形;

(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;

(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列运算正确的是(  )

    A. a3﹣a2=a            B. (a23=a5               C. a4•a=a5                    D. 3x+5y=8xy

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.

(1)求抛物线的解析式;

(2)填空:

①用含m的式子表示点C,D的坐标:

C(       ),D(      );

②当m= 1 时,△ACD的周长最小;

(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为  m(结果保留根号).

查看答案和解析>>

同步练习册答案