【题目】国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款元用来代理品牌服装的销售.已知该品牌服装进价每件元,日销售(件)与销售价(元/件)之间的关系如图所示(实线),每天付员工的工资每人每天元,每天应支付其它费用元.
求日销售(件)与销售价(元/件)之间的函数关系式;
若暂不考虑还贷,当某天的销售价为元/件时,收支恰好平衡(收入支出),求该店员工人数;
若该店只有名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?
【答案】(1)y=;(2)3;(3)该店至少需要200天才能还清贷款,此时,每件服装的价格应定为55元.
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据收入等于支出,可得一元一次方程,根据解一元一次方程,可得答案;
(3)分类讨论40≤x≤58,或58≤x≤71,找出两种情况下定价为多少时,每日收入最高,再由(收入﹣支出)×天数≥债务,即可得出结论.
(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得:
,解得:,∴y=﹣2x+140;
当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得:
,解得:,∴y=﹣x+82.
综上所述:y=.
(2)设人数为a,当x=48时,y=﹣2×48+140=44,则(48﹣40)×44=106+82a,解得:a=3.
答:该店员工人数为3.
(3)令每日的收入为S元,则有:
当40≤x≤58时,S=(x﹣40)(﹣2x+140)=﹣2(x﹣55)2+450,故当x=55时,S取得最大值450;
当58<x≤71时,S=(x﹣40)(﹣x+82)=﹣(x﹣61)2+441,故当x=61时,S取得最大值441.
综上可知:当x=55时,S取得最大值450.
设需要b天,该店还清所有债务,则:
(450﹣106﹣82×2)b≥36000,解得:b≥200.
故该店至少需要200天才能还清贷款,此时,每件服装的价格应定为55元.
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGF的度数;
(2)连接DG,若AG=3、BG=2,求DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中:
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的解析式为.
写这个二次函数图象的对称轴和顶点坐标,并求图象与轴的交点坐标;
在给定的坐标系中画出这个二次函数大致图象,并求出抛物线与坐标轴的交点所组成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完.
(1)商厦第一批和第二批各购进休闲衫多少件?
(2)请问在这两笔生意中,商厦共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
x | -1 | 0 | 1 | 3 |
y | -1 | 3 | 5 | 3 |
下列结论:①c=3;②当x>1时,y的值随x的增大而减小;③函数的最大值是5;④abc<0.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为( )
A.10°B.15°C.20°D.30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王霞和爸爸妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出坐标原点O和x轴,y轴.只知道游乐园D的坐标为(1,﹣2)
(1)请画出x轴,y轴,并标出坐标原点O.
(2)写出其他各景点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com