【题目】直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.
【答案】(22020﹣1,22019)
【解析】
求出直线y=x+1与x轴、y轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B1、B2、B3……的坐标,根据规律得到答案.
解:直线y=x+1与x轴,y轴交点坐标为:A1(0,1),即正方形OA1B1C1的边长为1,
∵△A1B1A2、△A2B2A3,都是等腰直角三角形,边长依次为1,2,4,8,16,
∴B1(1,1),B2(3,2),B3(7,4),B4(15,8),
即:B1(21﹣1,20),B2(22﹣1,21),B3(23﹣1,22),B4(24﹣1,23),
故答案为:B2020(22020﹣1,22019).
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点O在坐标原点,点B的坐标是(6,4),如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的,那么点B'的坐标__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD⊥AB,且CD2=ADDB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.则下列结论正确的是( )
A. ①②④ B. ②③④ C. ①②③④ D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.反比例函数y=是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克)35 35 34 39 37
(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?
(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com