精英家教网 > 初中数学 > 题目详情
8.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.
(1)求证:AE=2CE;
(2)求证:DE=EC.

分析 (1)首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE;
(2)通过BE=AE,得到∠ABE=∠A=30°,求得∠CBE=∠ABE=30°,根据角平分线的性质即可得到结论.

解答 解:(1)连接BE,
∵在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=90°-∠A=60°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE;

(2)∵BE=2CE,AE=2CE;
∴BE=AE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABE=30°,
∵DE⊥AB,∠C=90°,
∴DE=CE.

点评 此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知y=y1-y2,y1与x成反比例,y2与(x-2)成正比例,并且当x=-1时,y=-15,当x=2时,y=$\frac{3}{2}$;求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{\begin{array}{l}{a+b=3}\\{a-b=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列多项式乘法中不能用平方差公式计算的是(  )
A.(2x2y-1)(-2x2-1)B.(a3-b3)(b3-a3C.(a+b)(a-b)D.(a2+b2)(b2-a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,过?ABCD的对角线的交点O任意作一条直线交AB,CD分别于点E,F.
(1)求证:BE=DF;
(2)如果E、F分别是这条直线与CB,AD的延长线的交点,是否仍然有BE=DF?若有,请证明;
(3)当BE=$\frac{1}{m}$AB时,若△BOE的面积为S,将?ABCD的面积用含m,S的式子表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,已知A($\sqrt{3}$,1),B(2,0),O(0,0),反比例函数y=$\frac{k}{x}$的图象经过点A.
(1)求k的值;
(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,点B与点D对应,试判断点D是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在平面直角坐标系xOy(如图)中,经过点A(-1,0)的抛物线y=-x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.
(1)求b的值以及直线AD与x轴正方向的夹角;
(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;
(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.有一个长为a、宽为1的矩形,若将该矩形对折1次,所得矩形与原矩形相似,则可求得a=$\sqrt{2}$;若将矩形沿同一方向对折2次,所得矩形与原矩形相似,则可求得a=2…若将该矩形沿同一方向对折n次,所得矩形与原矩形相似,则a=$\sqrt{{2}^{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在梯形ABCD中,AD∥BC,BD2=AD•BC,求证:△ADB∽△DBC.

查看答案和解析>>

同步练习册答案