精英家教网 > 初中数学 > 题目详情

【题目】为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得平安中心”AB的顶部A处的仰角为60°(如图).已知CDB三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53cos32°≈0.85tan32°≈0.62tan44°≈0.991.41)

【答案】594

【解析】

可以根据题意设,进而得出:

在根据顶部A处的仰角为60°,列出方程可得x的值,再把x代入,进而得出AB的高度.

解:过点EAB于点F

如图所示:

,则

,分别把AFBF代入上式可得出x值,

即:,

x值代入中得出:

.

故答案为:594.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:

(1)求n的值;

(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;

(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EFBC上两点,且BE=CFAF=DE

求证:(1△ABF≌△DCE

  1. 四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P ACPC,∠COB2PCB

1)求证:PC是⊙O的切线;

2)求证:BCAB

3)点M是弧AB的中点,CMAB于点N,若AB8,求MN·MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山位于树的西面.山高为未知数,山与树相距53里,树高95.人站在离树3里的地方,观察到树梢恰好与山峰处在同一条直线上,人眼离地7.则山高的长为(结果保留到整数,1=10尺)( )

A.162B.163C.164D.165

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.

1)求的函数关系式(不要求写出自变量的取值范围);

2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.

(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);

(2)求小明沿AB方向匀速前进的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:

方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.

1)若a=6

①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?

②按图乙的方案,能围成的矩形花圃的最大面积是多少?

2)若0a6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.

查看答案和解析>>

同步练习册答案