精英家教网 > 初中数学 > 题目详情

【题目】若关于t的不等式组恰有三个整数解,则关于x的一次函数y=x-a的图象与反比例函数y=的图象的公共点的个数为______.

【答案】0或1.

【解析

试题根据不等式组恰有三个整数解,得出a的取值范围,联立一次函数和反比例函数解析式,利用二次函数的性质判断其判别式的值的情况,从而确定交点的个数.

试题解析:解不等式组得at

原不等式组恰有三个整数解,即-1,0,1,

-2<a-1.

一次函数y=x-a的图象与反比例函数y=的图象的交点坐标即是方程组的解.

消去方程组中的y得,x-a=

即x2-4ax-43a+2=0.

其判别式=-4a2+163a+2=16a23a+2=16a+1)(a+2.当-2<a-1时,a+1)(a+20,即△≤0.

两个图象的公共点的个数为0或1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】华星商店准备从阳光机械厂购进甲、乙两种零件进行销售,若一个甲种零件的进价比一个乙种零件的进价多50元,用4000元购进甲种零件的数量是用1500元购进乙种零件的数量的2倍.

(1)求每个甲种零件,每个乙种零件的进价分别为多少元?

(2)华星商店甲种零件每件售价为260元,乙种零件每件售价为190元,商店根据市场需求.决定向该厂购进一批零件、且购进乙种零件的数量比购进甲种零件的数量的2倍还多4个,若本次购进的两种零件全部售出后,总获利不少于2400元、求该商店本次购进甲种零件至少是多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB在数轴上对应的数分别用ab表示,并且关于x的多项式(a+10x7+2xb-154是五次二项式,PQ是数轴上的两个动点.

1a_____b_____

2)设点P在数轴上对应的数为xPA+PB40,求x的值;

3)动点PQ分别从AB两点同时出发向左运动,点PQ的运动速度分别为3个单位长度/秒和2个单位长度/秒.点M是线段PQ中点,设运动的时间小于6秒,问6AM+5PB的值是否发生变化?若不变,求其值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的边ABAC为腰分别向外作等腰直角三角形ABD和等腰直角三角形ACE,连接DE.MBC中点,MA延长线交DE于点H

(1) 求证:AHDE.

(2) DE=4AH=3,求△ABM的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电商场计划用9万元从生产厂家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你计算一下商场有哪几种进货方案?

2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.

(1)求证:四边形AECF是菱形;

(2)若AC=4,BE=1,直接写出菱形AECF的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形 ABCD 中,对角线 AC、BD 相交于点 O,过点 O 的两条直线分别交边 AB、CD、AD、BC 于点 E、F、G、H.

(感知)如图,若四边形 ABCD 是正方形,且 AG=BE=CH=DF,则 S 四边形AEOG S 正方形 ABCD

(拓展如图②,若四边形 ABCD 是矩形 S 四边形 AEOGS 矩形 ABCD AB=a, AD=b,BE=m, AG 的长用含 a、b、m 的代数式表示);

(探究)如图,若四边形 ABCD 是平行四边形,且 AB=3,AD=5,BE=1, 试确定 F、G、H 的位置,使直线 EF、GH 把四边形 ABCD 的面积四等分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,∠BAC45°.若AD平分∠BACBCDBEACE,且交AO,连接OC.则下列说法中正确的是(  )①ADBC;②OC平分BE;③OECE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度

A.①②③B.②④⑤C.①③⑤D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案