【题目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度
![]()
A.①②③B.②④⑤C.①③⑤D.①③④⑤
【答案】C
【解析】
①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO=∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,BD=CD,即①正确,
∴OB=OC,
∵BE⊥AC,
∵OC>OE,
∴OB>OE,即②错误,
∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,
∴∠ABE=∠ACO=45°,
∴∠ECO=∠EOC=45°,
∴OE=CE,即③正确,
∵∠AEB=90°,∠ABE=45°,
∴AE=EB,
∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,
无法判断△ACD≌△BCE,故④错误,
故选:C.
科目:初中数学 来源: 题型:
【题目】先阅读材料,再结合要求回答问题.
【问题情景】
如图①:在四边形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且线段BE,EF,FD满足BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.
![]()
【初步思考】
小王同学探究此问题的方法是:延长FD到G,使DG=BE,连结AG.
先证明△ABE≌△ADG,再证明△AEF≌△AGF,
可得出∠EAF与∠BAD之间的数量关系是 .
【探索延伸】
若将问题情景中条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②),其余条件不变,请判断上述数量关系是否仍然成立,若成立,请证明;若不成立,请说明理由.
【实际应用】
如图③,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处且相距210海里.试求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m到小夏家C处.
(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;
(2)小红家在学校什么位置?离学校有多远?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线l1与直线l2平行,且它们之间的距离为3,A,B是直线l1上的两个定点,C,D是直线l2上的两个动点(点C在点D的左侧),AB=CD=6,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(如图1)
(1)当A1与D重合时(如图2),四边形ABDC是什么特殊四边形,为什么?
(2)当A1与D不重合时,连接A1D,则A1 D∥BC(不需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l为y=
x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为(_______).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具用品商店销售A、B两种款式文具盒,已知购进1个A款文具盒比B款文具盒便宜5元,且用300元购入A款文具盒的数量比购入B款文具盒的数量多5个.
(1)购进一个A款文具盒、一个B款文具盒各需多少元?
(2)若A款文具盒与B款文具盒的售价分别是20元和30元,现该文具用品商店计一划用不超过1000元购入共计60个A、B两种款式的文具盒,且全部售完,问如何安排进货才能使销售利润最大?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
![]()
A.AE=
CEB.AE=
CEC.AE=
CED.AE=2CE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com