【题目】为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共查了 名学生:
(2)请补全两幅统计图:
(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.
【答案】(1)200;(2)补图见解析;(3).
【解析】
(1)根据A类的人数和所占的百分比,即可求出总人数;
(2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形;
(3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案.
(1)调查的总学生是=200(名);
故答案为200.
(2)B所占的百分比是1-15%-20%-30%=35%,
C的人数是:200×30%=60(名),
补图如下:
(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生,
则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种,
选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种,
则两人均是最喜欢毽球运动的学生的概率.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,小聪同学利用直尺和圆规完成了如下操作:
①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;
②作直线,交于点.
请你观察图形解答下列问题:
(1)与的位置关系:
直线是线段的____________线;
(2)若,,求矩形的对角线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是弧AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交D的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;
(2)当OB=2时,求AH的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.
(1)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在 .
(2)当AP⊥EF时,求出此时t的值
(3)以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励下岗工人再就业,某地市政府规定,企业按成本价提供产品给下岗人员自主销售,成本价与出厂价之间的差价由政府承担.老李按照政策投资销售本市生产的一种儿童面条.已知这种儿童面条的成本价为每袋12元,出厂价为每袋16元,每天销售量(袋)与销售单价(元)之间的关系近似满足一次函数:.
(1)老李在开始创业的第1天将销售单价定为17元,那么政府这一天为他承担的总差价为多少元?
(2)设老李获得的利润为(元),当销售单价为多少元时,每天可获得最大利润?
(3)物价部门规定,这种面条的销售单价不得高于24元,如果老李想要每天获得的利润不低于216元,那么政府每天为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B坐标为(0,m)(m>0),点A在x轴正半轴上,直线AB经过点A,B,且tan∠BAO=2.
(1)若点A的坐标为(3,0),求直线AB的表达式;
(2)反比例函数y=的图象与直线AB交于第一象限的C、D两点(BD<BC),当AD=2DB时,求k1的值(用含m的式子表示);
(3)在(1)的条件下,设线段AB的中点为E,过点E作x轴的垂线,垂足为M,交反比例函数y=的图象于点F.分别连接OE、OF,当△OEF与△OBE相似时,请直接写出满足条件的k2值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com